Solar Neutrino Physics With Borexino I

Livia Ludhova
INFN Milano, Italy
(on behalf of Borexino collaboration)

Borexino Collaboration

Perugia

Princeton University

Kurchatov Institute (Russia)

Jagiellonian U. Cracow (Poland)

Heidelberg (Germany)

Virginia Tech. University

Dubna JINR (Russia)

Livia Ludhova (Borexino collaboration)

APC Paris

Rencontres de Moriond EW, La Thuile, 3-10 March 2012

Nuclear reactions in the Sun

PP cycle... 99% of energy

Rencontres de Moriond EW, La Thuile, 3-10 March 2012

CNO cycle... <1% of energy

Poorly known
Not directly measured

$${}^{12}C + {}^{1}H \rightarrow {}^{13}N + \gamma$$

$${}^{13}N \rightarrow {}^{13}C + e^{+} \leftarrow \nu$$

$${}^{13}C + {}^{1}H \rightarrow {}^{14}N + \gamma$$

$${}^{14}N + {}^{1}H \rightarrow {}^{15}O + \gamma$$

$${}^{15}O \rightarrow {}^{15}N + e^{+} \leftarrow \nu$$

$${}^{15}N + {}^{1}H \rightarrow {}^{12}C + {}^{4}He$$

$${}^{16}O + {}^{1}H \rightarrow {}^{17}F + \gamma$$

$${}^{17}F \rightarrow {}^{17}O + e^{+} \leftarrow \nu$$

$${}^{17}O + {}^{1}H \rightarrow {}^{14}N + {}^{4}He$$

Solar-neutrino energy spectrum

What can we learn from solar neutrinos (1)?

Astrophysics: resolving "metallicity problem"

metallicity
abundance of the elements above He

New 3D Standard Solar Models -> lower metallicity -> discrepancy with helioseismology... where is the problem?

Sources	$\Phi(v \text{ sec}^{-1} \text{ cm}^2)$	$\Phi(v \text{ sec}^{-1} \text{ cm}^2)$	Difference
	high-metallicity	low-metallicity	%
pp	5.98(1±0.006)×10 ¹⁰	6.03(1±0.006)×10 ¹⁰	0.8
pep	1.44(1±0.012)×10 ⁸	1.47 (1±0.012)×108	2.0
hep	$8.04(1\pm0.300)\times10^3$	$8.31(1\pm0.300)\times10^3$	33
^{7}Be	5.00(1±0.070)×109	4.56(1±0.070)×109	9.4
8 B	$5.58(1\pm0.140)\times10^{6}$	4.59(1±0.140)×106	19.8
^{13}N	2.96(1±0.140)×108	2.17(1±0.140)×108	31.6
150	2.23(1±0.150)×108	1.56(1±0.150)×108	33.5
^{17}F	5.52(1±0.170)×10 ⁶	3.40(1±0.160)×10 ⁶	53.0

Solar neutrino fluxes depend on metallicity!

- •Solar Model: Serenelli, Haxton and Pena-Garay arXiV:1104.1639
- •High metallicity GS98 = Grevesse et al.S. Sci. Rev. 85,161 ('98);
- •Low metallicity AGS09 = Asplund, et al, A.R.A.&A. 47(2009)481;

What can we learn from solar neutrinos (2)?

Neutrino Physics: precision measurement of solar v fluxes vs survival probability Pee

Pee = electron neutrino survival probability from the Sun's core to the detector

Vacuum regime

Matter regime

Low energy neutrinos:

flavor change dominated by vacuum oscillations;

High energy neutrinos:

Resonant oscillations in matter (MSW effect):

Effective electron neutrino mass is increased due to the charge current interactions with electrons of the Sun

Transition region:

Decrease of the v_e survival probability (P_{ee})

Rencontres de Moriond EW, La Thuile, 3-10 March 2012

What can we learn from solar neutrinos (2)?

Neutrino Physics: precision measurement of solar v fluxes vs survival probability Pee

Low energy neutrinos:

flavor change dominated by vacuum oscillations;

High energy neutrinos:

Resonant oscillations in matter (MSW effect):

Effective electron neutrino mass is increased due to the charge current interactions with electrons of the Sun

Transition region:

Decrease of the v_e survival probability (P_{ee})

Vacuum regime

Matter regime

Rencontres de Moriond EW, La Thuile, 3-10 March 2012

Borexino experimental site

Borexino Collaboration: Nucl. Instr. Methods. Phys. Res. A 600 (2009) 568-593: Borexino detector at the Laboratori Nazionali del Gran Sasso.

ROME

Borexino detector

Rencontres de Moriond EW, La Thuile, 3-10 March 2012

Detection principle

- Neutrino elastic scattering on electrons of liquid scintillator: e⁻ + ν → e⁻ + ν;
- Scattered electrons cause the scintillation light production;
- Advantages:
 - Low energy threshold (~ 0.2 MeV);
 - High light yield and a good energy resolution;
 - Good position reconstruction;

Drawbacks:

- Info about the v directionality is lost;
- v-induced events can't be distinguished from the events of β/γ natural radioactivity;

End October 2006

March 2007

Rencontres de Moriond EW, La Thuile, 3-10 March 2012

May 2007

Livia Ludhova (Borexino collaboration)

Detection principle

- Neutrino elastic scattering on electrons of liquid scintillator: e⁻ + ν → e⁻ + ν;
- Scattered electrons cause the scintillation light production;
- Advantages:
 - Low energy threshold (~ 0.2 MeV);
 - High light yield and a good energy resolution;
 - Good position reconstruction;

Drawbacks:

- Info about the v directionality is lost;
- v-induced events can't be distinguished from the events of β/γ natural radioactivity;

Extreme radiopurity is a must for a precision spectroscopy measurement!!!

DAQ STARTS: May 2007

Livia Ludhova (Borexino collaboration)

Calibration with radioactive sources

	γ			β		α	n (AmBe)							
	⁵⁷ Co	¹³⁹ Ce	²⁰³ Hg	⁸⁵ Sr	⁵⁴ Mn	⁶⁵ Zn	⁶⁰ Co	⁴⁰ K	¹⁴ C	²¹⁴ Bi	²¹⁴ Po	n-p	n+12C	n+Fe
energy (MeV)	0.122	0.165	0.279	0.514	0.834	1.1	1.1, 1.3	1.4	0.15	3.2		2.226	4.94	~7.5

Absolute source position: LED and CCD cameras (± 2cm);

cca. 300 points through the whole scintillator volume;

- Detector response as a function of position;
- Fiducial volume definition and tuning of th spatial reconstruction algorithm;
- Energy scale definition
 precise calibration in the 0-7 MeV range.
- Tuning of the full Monte Carlo simulation

SYSTEMATIC ERROR REDUCTION
For ALL SOLAR NEUTRINO RESULTS

Rencontres de Moriond EW, La Thuile, 3-10 March 2012

⁷Be neutrino (862 keV) rate @ 4.6% (SSM prediction @ 7%)

Spectral feature: compton-like edge from scattered electrons

$$46.0 \pm 1.5(\text{stat})^{+1.5}_{-1.6}(\text{syst})$$

cpd/100 tons

1ton of LS = $(3.307 \pm 0.003) \times 10^{29}$ electrons

- Spectral fit including neutrino signal + background components;
- Two independent methods:
 MC based and the analytical one;
- fit with and without α's statistical subtraction;

Implications of the ⁷Be measurement

- •comparing to non-oscillated SSM : no oscillation excluded @ 5.0 σ (electron equivalent flux (862 keV line): (2.78 ± 0.13) x 10⁹ cm⁻² s⁻¹)
- assuming MSW-LMA: f (7Be) = measured flux / SSM = 0.97 + 0.09
- including all solar experiments + luminosity constrain:

$$f_{pp} = 1.013^{+0.003}_{-0.010}$$

 $f_{CNO} < 2.5 \text{ at } 95\% \text{ C.L.}$

Pee = 0.51 + 0.07(experiment + SSM high metallicity);

Rencontres de Moriond EW, La Thuile, 3-10 March 2012

Absence of day-night asymmetry for ⁷Be rate (R)

$$A_{dn} = 2\frac{R_N - R_D}{R_N + R_D} = \frac{R_{\text{diff}}}{\langle R \rangle}$$

•MSW: a possible regeneration of electron neutrinos in the matter (within the Earth during night): effect depends on the oscillation parameters and on energy;

- in agreement with MSW-LMA;
- LOW region excluded at $> 8.5 \, \sigma$ with solar neutrinos only: for the first time without the use of reactor ANTIneutrinos and therefore the assumption of CPT symmetry;
- constrains non standard interacitons (MaVaN in Holanda 2009 excluded)

Regions allowed @ 68.27%, 95.45%, 99.73% CL

Livia Ludhova (Borexino collaboration)

Rencontres de Moriond EW, La Thuile, 3-10 March 2012

First observation of pep neutrinos (1442 keV)

• Main background ¹¹C (e⁺) with τ = 29.4 min:

$$\mu + {}^{12}C \longrightarrow \mu + n + {}^{11}C$$

Three Fold Coincidence (TFC): space-time veto removes 90% of ¹¹C payed with 50% loss of exposure

- pulse-shape discrimination: positronium formation + annihilation
- simultaneous fit in 3 parameter space: energy spectra, pulse shape, and radial distribution (sensitive to external background):

$$3.1 \pm 0.6_{\text{stat}} \pm 0.3_{\text{syst}} \text{ counts/(day} \cdot 100 \text{ ton)}$$

(assuming MSW-LMA)

PS-BDT Parameter

Energy spectral fit

Pulse shape

Likelihood ratios for fits with fixed pep/CNO rates and the best fit

CNO neutrinos

- same analysis as for pep
- •only limits, correlation with ²¹⁰Bi
- the strongest limit to date

<7.9 counts/(day · 100 ton) (95% C.L.)

 $< 7.7 \times 10^8 \text{ cm}^{-2} \text{ s}^{-1} (95\% \text{ C.L.})$

(assuming MSW-LMA)

not sufficient to resolve metallicity problem

Rencontres de Moriond EW, La Thuile, 3-10 March 2012

⁸B neutrino rate with 3 MeV energy threshold

lower energies limited by ²⁰⁸TI

	3.0-16.3 MeV	5.0-16.3 MeV
Rate [cpd/100 t] $\Phi_{\rm exp}^{\rm ES}$ [10 ⁶ cm ⁻² s ⁻¹] $\Phi_{\rm exp}^{\rm ES}/\Phi_{\rm th}^{\rm ES}$	$0.22 \pm 0.04 \pm 0.01$ $2.4 \pm 0.4 \pm 0.1$ 0.88 ± 0.19	$0.13 \pm 0.02 \pm 0.01$ $2.7 \pm 0.4 \pm 0.2$ 1.08 ± 0.23

TABLE VI. Results on ⁸B solar neutrino flux from elastic scattering, normalized under the assumption of the no-oscillation scenario reported by SuperKamiokaNDE, SNO, and Borexino.

	Threshold [MeV]	$\Phi_{^{8}B_{2}}^{ES}$ [10 ⁶ cm ² s ⁻¹]
SuperKamiokaNDE I [3]	5.0	$2.35 \pm 0.02 \pm 0.08$
SuperKamiokaNDE II [2]	7.0	$2.38 \pm 0.05^{+0.16}_{-0.15}$
SNO D ₂ O [4]	5.0	$2.39^{+0.24}_{-0.23} {}^{+0.12}_{-0.12}$
SNO Salt Phase [25]	5.5	$2.35 \pm 0.22 \pm 0.15$
SNO Prop. Counter [26]	6.0	$1.77^{+0.24}_{-0.21} ^{+0.09}_{-0.10}$
Borexino	3.0	$2.4 \pm 0.4 \pm 0.1$
Borexino	5.0	$2.7 \pm 0.4 \pm 0.2$

To conclude, we put all together..... Pee after Borexino I

Future and Borexino phase II

- since July 2010 we have undertaken a series of purification campaigns to decrease radioactive background;
- Nitrogen stripping has been successful in removing 85Kr;
- moderate success at removing 210Pb/Bi by water extraction;
- 210Po decreasing;
- Borexino phase II is about to start...
 - continue solar neutrino program;
 - more statistics for an update of geo-neutrino measurement;
 - another scientific goals under discussion

More about Borexino solar results in:

Pep & CNO limit : G. Bellini et al. : First Evidence of *pep* Solar Neutrinos by Direct Detection in Borexino, Phys. Rev. Lett. 108 (2012) 051302.

7Be Adn: G. Bellini at al.: Absence of day-night asymmetry of 862 keV ⁷Be solar neutrino rate in Borexino and MSW oscillation parameters, Physics Letters B 707 (2012) 22-26.

7Be @ **5%:** G. Bellini et al.: Precision measurement of the 0.862 MeV ⁷Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302.

8B > 3 MeV: G. Bellini at al. (Borexino collaboration): Measurement of the solar ⁸B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector. Phys. Rev. D 82 (2010) 033006.

Solar antinu limits: G. Bellini at al.: Study of solar and other unknown anti-neutrino fluxes with Borexino at LNGS., Phys. Lett. B 696 (2011) 191-196.

7Be @ **10%:** C. Arpesella *at al.* (Borexino collaboration): Direct measurement of the ⁷Be solar neutrino flux with 192 days of Borexino data, Phys. Rev. Lett. 101 (2008) 091302.

7Be @ **17%:** C. Arpesella *at al.* (Borexino collaboration): First real time detection of ⁷Be solar neutrinos by Borexino, Phys. Lett. B 658 (2008) 101-108

Backup

The internal background in Borexino i

- Careful selection of the construction materials and operational procedures;
- Special procedures for fluid procurement;
- Scintillator and buffer purification during the filling;
- Sparging with high purity N2;
- •More than 15 years of work... Extreme radiopurity is a must!!!

Background	Typical abundance (source)	Goal	Measured
¹⁴ C/ ¹² C	10 ⁻¹² (cosmogenic) g/g	10 ⁻¹⁸ g/g	~2 x 10 ⁻¹⁸ g/g
238U (by ²¹⁴ Bi- ²¹⁴ Po)	2 x10 ⁻⁵ (dust) g/g	10 ⁻¹⁶ g/g	(1.6 <u>+</u> 0.1) x 10 ⁻¹⁷ g/g
²³² Th (by ²¹² Bi- ²¹² Po)	2 x 10 ⁻⁵ (dust) g/g	10 ⁻¹⁶ g/g	(5 <u>+</u> 1) x 10 ⁻¹⁸ g/g
²²² Rn (by ²¹⁴ Bi- ²¹⁴ Po)	100 atoms/cm³ (air) emanation from materials	10 ⁻¹⁶ g/g	~ 10 ⁻¹⁷ g/g (~1 count /day/100t)
²¹⁰ Po	Surface contamination	~1 c/day/t	May 2007: 70 c/d/t Sep 2008: 7 c/d/t
⁴⁰ K	2 x 10 ⁻⁶ (dust) g/g	~10 ⁻¹⁸ g/g	< 3 x 10 ⁻¹⁸ (90%) g/g
⁸⁵ Kr	1 Bq/m³ (air)	~1 c/d/100t	(28 <u>+</u> 7) c/d/100t (fast coinc.)
³⁹ Ar	17 mBq/m³ (air)	~1 c/d/100t	<< ⁸⁵ Kr

Data structure and detector performance

- Charged particles and γ produce scintillation light: photons hit inner PMTs;
- DAQ trigger: > 25 inner PMTs (from 2212) are hit within 60-95 ns:

Outer detector gives a muon veto if at least 6 outer PMTs (from 208) fire;

Light yield: (500 <u>+</u> 12) p.e./MeV

taking into account quenching factor

Spatial resolution: 35 cm @ 200 keV (scaling as $N_{p.e.}^{-1/2}$) 16 cm @ 500 keV

Energy resolution (s): 10% @ 200 keV 8% @ 400 keV 6% @ 1000 keV

Muon and neutron detection

- μ are identified by the OD and by the ID
 - OD eff: > 99.28%
 - ID analysis based on pulse shape variables
 - Cluster mean time, peak position in time
 - Combined overall efficiency > 99.992%
 - After cuts, μ not a relevant background for ⁷Be
 - Residual background: < 1 count /day/ 1 00 t

Muon track reconstruction

NEW: Muon and Cosmogenic Neutron Detection in Borexino. Sent to JINST 2 weeks ago, arXiv:1101.3101

⁸B analysis details

External backgrounds (FV CUT):

- High energy γ from neutrons
- ²¹⁴Bi and ²⁰⁸TI from Rn emanated from nylon or detector

Internal radiocative backgrounds:

- ²¹⁴Bi (²³⁸U chain) via ²¹⁴Bi-²¹⁴Po coincidences;
- ²⁰⁸TI (²³²Th chain) from bulk: stat. subtr.;

Cosmogenic background rejection:

- FAST COSMOGENIC CUT: 6.5 s dead time after all ID muons to reject fast cosmogenic isotopes; (29.2 % dead time,, 4300 muons/day passing ID)
- **NEUTRON REJECTION**: 2 ms after all muons (neutron capture time 256 μs , AmBe source);
- •10C SUBTRUCTION: 3-fold coincidence with parent muon and neutron;
- •11Be STATISTICAL SUBTRUCTION;

Background: ²³²Th and ²³⁸U content

Assuming secular equilibrium: –

²³²Th chain

²³⁸U chain

$$\tau = 432.8 \text{ ns}$$
²¹²Bi $\xrightarrow{\beta}$ ²¹²Po $\xrightarrow{\alpha}$ ²⁰⁸Pb
^{2.25} MeV ~800 keV eq.

$$\tau = 236 \mu s$$
²¹⁴Bi $\xrightarrow{\beta}$ ²¹⁴Po $\xrightarrow{\alpha}$ ²¹⁰Pb ~700 keV eq.

 (6.8 ± 1.5) 10^{-18} g(Th)/g

Bulk contamination

(1.6 0.1) 10⁻¹⁷ g(U)/g

Only few bulk candidates

Background: ²¹⁰Po and ⁸⁵Kr

210Po: end of ²³⁸U chain:

$$\beta^{-}(61 \text{ keV})$$
 $\beta^{-}(1.2 \text{MeV})$ α
 2^{10}Pb -> 2^{10}Bi -> 2^{10}Po -> 2^{06}Pb
 $t_{1/2}$ 22.3 y 5.01 d 138.38 d stable

- The bulk ²³⁸U and ²³²Th contamination is negligible
- The ²¹⁰Po background is NOT related neither to ²³⁸U nor to ²¹⁰Pb contamination
- May 2007 ~80 counts/day/ton, τ =204.6 days
- ²¹⁰Bi no direct evidence ---> free parameter in the total fit, cannot be disentangled, in the ⁷Be energy range, from the CNO

85 Kr β-decay energy spectrum similar to the ⁷Be recoil electron

85
Kr $\xrightarrow{\beta}$ 85 Rb 687 keV

$$\tau = 10.76 \text{ y} - \text{BR}$$
: 99.56%

⁸⁵Kr is studied through:

85
Kr $\xrightarrow{\beta}$ 85 mRb $\xrightarrow{\gamma}$ 85 Rb 173 keV 514 keV

$$\tau = 1.46 \text{ ms} - \text{BR}: 0.43\%$$

PRELIMINARY: the 85Kr contamination (30±5) counts/day/100 ton