Luca Marzola

Strong SO(10)-inspired leptogenesis

- predictions and justification -

Reference papers:

•E. Bertuzzo, P. Di Bari, L.M. - Nucl.Phys.B849:521-548,2011

•P. Di Bari, L. M. - in preparation

Rencontres de Moriond, E.W. session, 3-10/03/2012

•Seesaw type I, 3 RH neutrinos N_{Ri} $\mathcal{L} = \mathcal{L}_{SM} + i\overline{N_{Ri}}\partial^{\mu}\gamma_{\mu}N_{Ri} - h_{\alpha i}\overline{\ell_{L\alpha}}N_{Ri}\tilde{\Phi} - \frac{1}{2}\sum_{i=1}^{3}\overline{N_{Ri}^{c}}D_{Mi}N_{Ri} + \text{H.c.}$ \downarrow 18 new parameters: $h_{\alpha i}$, M_{i} . $D_{x}:=diag(X_{1}, X_{2}, X_{3})$

•Seesaw type I, 3 RH neutrinos N_{Ri} $\mathcal{L} = \mathcal{L}_{SM} + i \overline{N_{Ri}} \partial^{\mu} \gamma_{\mu} N_{Ri} - h_{\alpha i} \overline{\ell_{L\alpha}} N_{Ri} \tilde{\Phi} - \frac{1}{2} \sum_{i=1}^{3} \overline{N_{Ri}^{c}} D_{Mi} N_{Ri} + \text{H.c.}$ $\overrightarrow{}$ 18 new parameters: $h_{\alpha i}$, M_{i} . $D_{x}:=\text{diag}(X_{1}, X_{2}, X_{3})$ •Seesaw algebra: assuming diagonalised charged leptons $m_{D} = vh$ $m_{\nu} = -m_{D} \frac{1}{D_{M}} m_{D}^{T} - D_{m} = U^{\dagger} m_{\nu} U^{*}$ $m_{D} = V_{L}^{\dagger} D_{m_{D}} U_{R}$

P. Di Bari, A. Riotto; 2008

SO(10)-inspired leptogenesis:

•SO(10)-inspired conditions:

 $-V_{L}$ mixing angles not larger than CKM ones -light neutrino Dirac masses proportional to the up-type quark ones:

$$D_{m_D} = \begin{pmatrix} \alpha_1 m_u & 0 & 0 \\ 0 & \alpha_2 m_c & 0 \\ 0 & 0 & \alpha_3 m_t \end{pmatrix}$$

m_{Di} parametrized by $\alpha_i \sim O(1)$...but only α_2 matters!

SO(10)-inspired leptogenesis:

•SO(10)-inspired conditions:

-V_L mixing angles not larger than CKM ones -light neutrino Dirac masses proportional to the up-type quark ones:

$$D_{m_D} = \begin{pmatrix} \alpha_1 m_u & 0 & 0 \\ 0 & \alpha_2 m_c & 0 \\ 0 & 0 & \alpha_3 m_t \end{pmatrix}$$

 m_{Di} parametrized by $\alpha_i \sim O(I)$...but only α_2 matters!

SO(10)-inspired leptogenesis:

•SO(10)-inspired conditions:

-V_L mixing angles not larger than CKM ones -light neutrino Dirac masses proportional to the up-type quark ones:

$$D_{m_D} = \begin{pmatrix} \alpha_1 m_u & 0 & 0 \\ 0 & \alpha_2 m_c & 0 \\ 0 & 0 & \alpha_3 m_t \end{pmatrix}$$

 m_{Di} parametrized by $\alpha_i \sim O(I)$...but only α_2 matters!

Strongly hierarchical RH neutrino mass spectrum: $M_3 > 10^{12} \text{ GeV} > M_2 > 10^9 \text{ GeV} \gg M_1$

•Leptogenesis process: N₂ dominated scenario

$$N_{B-L}^{lep,f} \simeq \frac{P_{2e}^0}{P_{\tilde{\tau}_2}^0} \varepsilon_{\tilde{\tau}_2} \kappa(K_2, K_{\tilde{\tau}_2}) e^{-\frac{3\pi}{8}K_{1e}} + \frac{P_{2\mu}^0}{P_{\tilde{\tau}_2}^0} \varepsilon_{\tilde{\tau}_2} \kappa(K_2, K_{\tilde{\tau}_2}) e^{-\frac{3\pi}{8}K_{1\mu}} + \varepsilon_{2\tau} \kappa(K_2, K_{2\tau}) e^{-\frac{3\pi}{8}K_{1\tau}}$$

-N₃: no active role

-N₂: asymmetry production in a 2-flavour regime -N₁: asymmetry wash-out (M₁<10⁹ GeV) in a 3-flavour regime

L. Marzola - Rencontres de Moriond, EW session

• Why $\eta_B^{CMB} \sim 10^{-9}$?

-10⁻⁹ is the natural order for $\eta_B^{lep} \sim 10^{-2} N_{B-L}^{lep,f}$ -Neglected possible preexistent contributions!! $N_{B-L}^{preex,0} \sim O(1)$

$$\eta_B \simeq 10^{-2} \left(N_{B-L}^{lep,f} + N_{B-L}^{preex,f} \right) \gg 10^{-9}$$

• Why $\eta_B^{CMB} \sim 10^{-9}$?

-10⁻⁹ is the natural order for $\eta_B^{lep} \sim 10^{-2} N_{B-L}^{lep,f}$ -Neglected possible preexistent contributions!! $N_{B-L}^{preex,0} \sim O(1)$

$$\eta_B \simeq 10^{-2} \left(N_{B-L}^{lep,f} + N_{B-L}^{preex,f} \right) \gg 10^{-9}$$

- $N_{B-L}^{preex,0}$ depends on unknown initial conditions (state of the Universe after inflation era)

why
$$\eta_B^{CMB} \sim 10^{-9}$$
 ?

• Why $\eta_B^{CMB} \sim 10^{-9}$?

-10⁻⁹ is the natural order for $\eta_B^{lep} \sim 10^{-2} N_{B-L}^{lep,f}$ -Neglected possible preexistent contributions!! $N_{B-L}^{preex,0} \sim O(1)$

$$\eta_B \simeq 10^{-2} \left(N_{B-L}^{lep,f} + N_{B-L}^{preex,f} \right) \gg 10^{-9}$$

- $N_{B-L}^{preex,0}$ depends on unknown initial conditions (state of the Universe after inflation era)

•Strong thermal leptogenesis:

$$\eta_B \simeq 10^{-2} \left(N_{B-L}^{lep,f} + N_{B-L}^{preex,f} \right) \simeq 10^{-9}$$

-Easy achievement in Vanilla Leptogenesis

-Flavour effects impose restrictive conditions on the seesaw parameter space, respected ONLY by the τ -N₂ dominated scenario

• Why $\eta_B^{CMB} \sim 10^{-9}$?

-10⁻⁹ is the natural order for $\eta_B^{lep} \sim 10^{-2} N_{B-L}^{lep,f}$ -Neglected possible preexistent contributions!! $N_{B-L}^{preex,0} \sim O(1)$

$$\eta_B \simeq 10^{-2} \left(N_{B-L}^{lep,f} + N_{B-L}^{preex,f} \right) \gg 10^{-9}$$

- $N_{B-L}^{preex,0}$ depends on unknown initial conditions (state of the Universe after inflation era)

•Strong thermal leptogenesis:

$$\eta_B \simeq 10^{-2} \left(N_{B-L}^{lep,f} + N_{B-L}^{preex,f} \right) \simeq 10^{-9}$$

E. Bertuzzo, P. Di Bari, L.M.; 2011

-Easy achievement in Vanilla Leptogenesis

-Flavour effects impose restrictive conditions on the seesaw parameter space, respected ONLY by the τN_2 dominated scenario

Asymmetric washout from NI: $K_{1e}, K_{1u} >> I; K_{1\tau} \sim I$

N2 dominated leptogenesis + strong washout: K₂>> I

L. Marzola - Rencontres de Moriond, EW session

L. Marzola - Rencontres de Moriond. EW session

Epilogue:

SO(10)-inspired model:
minimal SM extension
implement flavour effects
consistent with current
experimental results

<u>Strong leptogenesis:</u>
independence of initial conditions
justifies value of BAU
ensures predictability of the model

Strong SO(10)-inspired leptogenesis:

phenomenological test of the Seesaw parameter space
no inverted ordering

- •sharp predictions:
 - -m₁≃m_{ee}~10⁻² eV

-large θ_{13} , non-maximal θ_{23}