BOSS : Toute la lumière sur l'énergie sombre

Nicolás Busca - LPC 2/3/2012

Le principe cosmologique (préjugé ?) l'Univers est isotrope et homogène

•La théorie de la relativité génerale (théorie) $(géométrie) = 8\pi G \begin{pmatrix} distribution \\ de \\ matière \end{pmatrix}$

•L'expansion de l'Univers (observation)

Hubble E., PNAS 15, 168 (1929)

E. Hubble

•L'expansion de l'Univers (observation)

•L'expansion de l'Univers (observation)

•L'expansion de l'Univers (observation)

Hubble Space Telescope

(Wendy L. Freedman, Observatories of the Carnegie Institution of Washington, and NASA)

•Qu'est ce que c'est l'expansion ?

Observation : Les galaxies lointaines s'éloigne de nous

Théorie:

"condition initiale" : Les bouts de "matière" primordial avait une vitesse aléatoire (tel qu'on voit l'expansion aujourd'hui... comme on la voit aujourd'hui)

 \bigcirc

 \bigcirc

8

K

•Effet Doppler :

la lumière émise par des galaxies lointaines est décalée vers le rouge $\frac{\lambda \text{ observée}}{\lambda \text{ observée}} = |+z|$

émise

•Effet Doppler :

la lumière émise par des galaxies lointaines est décalée vers le rouge $\frac{\lambda \text{ observée}}{\lambda \text{ observée}} = |+z|$

émise

•Effet Doppler :

la lumière émise par des galaxies lointaines est décalée vers le rouge $\frac{\lambda \text{ observée}}{\lambda \text{ émise}} = |+z|$

•Expansion décrite par un "paramètre d'échelle" $a(z) \equiv I + z$ •Dynamique décrite par le taux de Hubble : $H(t) \equiv \frac{\dot{a}}{c}$

•Effet Doppler :

la lumière émise par des galaxies lointaines est décalée vers le rouge $\frac{\lambda \text{ observée}}{\lambda \text{ émise}} = |+z|$

•Expansion décrite par un "paramètre d'échelle" $a(z) \equiv I + z$ •Dynamique décrite par le taux de Hubble : $H(t) \equiv \frac{\dot{a}}{-}$

•Distances : "tricky"

1 billion years

distances = fonctions de H

ଚ୍ଚ ଚ୍ଚ

Distances en Cosmologie

idée : utiliser des étalons standards

distance de luminosité d_L (SNe):

épaisseur en z :

 $F = \frac{L}{4\pi d_L^2}$

Distances en Cosmologie

distance de luminosité d_L (SNe):

$$F = \frac{L}{4\pi d_L^2} \quad d_L = (1+z)r(z) = c(1+z).$$

distance de diamètre angulaire d_A :

$$\overbrace{\mathbf{d}_{\mathbf{A}}}^{\mathbf{\theta}} \mathbf{d}_{\mathbf{A}} = \frac{\ell}{\theta} = \frac{r(z)}{1+z}$$

Ζ

épaisseur en z :

 $d_{\parallel} = \frac{\ell}{dz} = \frac{1}{(1+z)H(z)}$

Le côté obscure du Big Bang <u> matière sombre</u>

Fritz Zwicky (1933)

matière "sombre" ~ 5x matière ordinaire

Le côté obscure...

Image visible (Galaxies)

Visible : Galaxies

Lensing : mass

X : Gaz

deux amas en collision

Le côté obscure...

Visible : Galaxies X : Gaz Lensing : mass

deux amas en collision Image X (gaz) - Chandra

Le côté obscure...

Visible : Galaxies X : Gaz Lensing : mass

Image X (gaz)

Contours de weak lensing (masse)

deux amas en collision Image X (gaz) - Chandra

L'avenir de l'Univers ?

L'avenir de l'Univers ?

Pour trancher : mesurer H(z) (donc Ω_M) e.g. avec de SNe

Résultats : aucun des trois !

Résultats : aucun des trois !

Résultats : aucun des trois !

L'avenir de l'Univers ?

(Tout?) Le côté obscure du Big Bang "known unknowns"

Interprétation physique de Λ

Energie sombre :
$$G_{\mu
u}=8\pi G T_{\mu
u}+\Lambda g_{\mu
u}$$

Gravité Modifiée : e.g. constante cosmologique (Einstein 1920's)

$$G_{\mu\nu} - \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Interprétation physique de Λ

Energie sombre :
$$G_{\mu
u}=8\pi G T_{\mu
u}+\Lambda g_{\mu
u}$$

 Λ : fluide avec $\rho_{\Lambda}(z)$

$$H(z) = \sqrt{\Omega_M (1+z)^3 + \Omega_\Lambda(z)}$$

Gravité Modifiée : e.g. constante cosmologique (Einstein 1920's)

$$G_{\mu\nu} - \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Interprétation physique de Λ

Energie sombre :
$$G_{\mu
u}=8\pi G T_{\mu
u}+\Lambda g_{\mu
u}$$

 Λ : fluide avec $\rho_{\Lambda}(z)$

$$H(z) = \sqrt{\Omega_M (1+z)^3 + \Omega_\Lambda(z)}$$

Gravité Modifiée : e.g. constante cosmologique (Einstein 1920's)

$$G_{\mu\nu} - \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Pour trancher :

- mesures précises de H(z), e.g. BOSS
- mesures précises de la gravité (formation des amas), e.g. DES

BOSS : baryon oscillations spectroscopic survey

```
Oscillations de baryons :

•Univers jeune (age < 370.000 ans)

•très dense (ρ >> 10<sup>9</sup> ρ<sub>auj</sub>)

•très chaud et ionisé (T >> 3000 K)
```


BOSS : baryon oscillations spectroscopic survey

```
Oscillations de baryons :

•Univers jeune (age < 370.000 ans)

•très dense (ρ >> 10<sup>9</sup> ρ<sub>auj</sub>)

•très chaud et ionisé (T >> 3000 K)
```


Oscillations de baryons :

- •Univers jeune (age < 370.000 ans)
- •très dense ($\rho \gg 10^9 \rho_{auj}$)
- très chaud et ionisé (T >> 3000 K)
- •fluide capable de soutenir d'ondes de pression

Oscillations de baryons :

- •Univers jeune (age < 370.000 ans)
- •très dense ($\rho \gg 10^9 \rho_{auj}$)
- •très chaud et ionisé (T >> 3000 K)
- •fluide capable de soutenir d'ondes de pression
- •conditions initiales données par des fluctuations quantique

fonction de corrélation

Oscillations de baryons :

- •Univers jeune (age < 370.000 ans)
- •très dense ($\rho \gg 10^9 \rho_{auj}$)
- très chaud et ionisé (T >> 3000 K)
- •fluide capable de soutenir d'ondes de pression
- •conditions initiales données par des fluctuations quantique

Oscillations de baryons :

- •Univers jeune (age < 370.000 ans)
- •très dense ($\rho \gg 10^9 \rho_{auj}$)
- très chaud et ionisé (T >> 3000 K)
- •fluide capable de soutenir d'ondes de pression
- •conditions initiales données par des fluctuations quantique

fonction de corrélation

0.2

z_{dec} ~1100 (T << 13.6 eV)

échelle BAO = c_s ·tdec ~ 150 Mpc

0.1

0.3

BOSS

- Projet principal du dark time de SDSS-III en 2009-2014
- But: de déterminer la position du pic BAO avec une précision de 1% à z~0.6 et 1.5% à z~2.3
- Implication: meilleurs contraintes sur la équation d'état de l'énergie sombre jusqu'à la prochaine génération d'expériences

SDSS - 2.4m telescope

Relevé spectrometrique
1/4 du ciel (10,000 deg²)
deux méthodes complémentaires :

LRG (garantie) : z~0.6
Lyα (nouvelle technique) : z~2.3

BOSS LRG

2.5-degree thick wedge of the redshift distribution of galaxies MAIN galaxy sample has median redshift z = 0.1

• galaxies géantes rouges comme traceurs de la matière

BOSS LRG

2.5-degree thick wedge of the redshift distribution of galaxies MAIN galaxy sample has median redshift z = 0.1

$$C(\vec{r}) = \langle \rho(\vec{r}_0)\rho(\vec{r}_0 + \vec{r}) \rangle \sim \frac{dN_{pairs}}{d\vec{r}}$$

estimated from the number of pairs of galaxies
compare to random data sets (without BAOs) to remove FoV biases

• galaxies géantes rouges comme traceurs de la matière

BOSS LRG

2.5-degree thick wedge of the redshift distribution of galaxies MAIN galaxy sample has median redshift z = 0.1

$$C(\vec{r}) = \langle \rho(\vec{r}_0)\rho(\vec{r}_0 + \vec{r}) \rangle \sim \frac{dN_{pairs}}{d\vec{r}}$$

estimated from the number of pairs of galaxies
compare to random data sets (without BAOs) to remove FoV biases

- galaxies géantes rouges comme traceurs de la matière
- gamme de z déterminée par le spectro (visible) : 0<z<0.7

How: BOSS-LRG vs SDSS-II

•2x volume
•5x density
•10x statistics
•1,600,000 LRGs

SDSS main sample SDSS I+II BOSS (SDSS III)

How: BOSS-LRG vs SDSS-II

SDSS main sample SDSS I+II BOSS (SDSS III)

Mesure garantie : pic observé dans SDSS II

How: BOSS-Lya

z=3 z=2 Distribution de matière échantillonnée par des lignes de visée de QSOs

BOSS-data taking

BOSS-data taking

BOSS-data taking

La fonction de corrélation en 2D

$$C(r_{||}, r_{\perp}) = C(r_{||}^2 + r_{\perp}^2)$$

Alcock & Paczyński (1979)

Caveat ! distorsions dans l'espace de z

Caveat ! distorsions dans l'espace de z

Caveat ! distorsions dans l'espace de z

 effet Kaiser: la matière tombe dans les puis de potentiel

Distorsiones en el espacio de redshift

• effet Kaiser: la matière tombe dans les puis de potentiel Z=Zcosmo + Zparticulière surdensité

> V observateur

Distorsiones en el espacio de redshift

effet Kaiser: la matière tombe dans les puis de potentiel
doigts de Dieu : amas virialisés

observateur

Distorsiones en el espacio de redshift

efecto Kaiser: la materia cae en los pozos de potencial gravitatorio
dedos de Dios: clusters virialisados

Distorsions dans l'espace de redshift

effet Kaiser : la matière tombe dans les puis de potentiel
doigts de dieu : amas virialisés
gêne ça la cosmologie ?

Distorsions dans l'espace de redshift

effet Kaiser : la matière tombe dans les puis de potentiel
doigts de dieu : amas virialisés

gêne ça la cosmologie ?

Non !

- doigts de dieux sont non linaires mais à petites échelles
- l'effet Kaiser est à échelles linaires : corrections analytique
- les vitesses ont un effet sur C(r) différent du rescaling de la cosmologie, donc on peut les séparer

Distorsions dans l'espace de redshift

- effet Kaiser : la matière tombe dans les puis de potentiel
 doigts de dieu : amas virialisés
 gêne ça la cosmologie ?
 Non !
 un paramètre additionnel :
 - $P_{meas}(k)=b^2(1+\beta\cos^2\theta)^2 P(k)$

β : paramètre de formation d'estructure

Résultats (pas encore des contraintes sur la cosmo)

Preliminary 3.0 300 2.5 280 4 2.0 260 Index Transverse 1.5 \mathbf{c} 240 1.0 C 220 0.5 0.0 200 240 300 200 220 260 280 Radial Index

Résultats

(pas encore des contraintes sur la cosmo)

Résultats (pas encore des contraintes sur la cosmo) Preliminary 1.0 détection du pic BAO à 5 0.8 0.6 r².C(r) 0.2 0.0 -0.2 20 80 60 40 0 Kilograms

défis de BOSS Lya

#2: fit du continu

défis de BOSS Lya

#2: fit du continu

le fit du continu biase la fonction de corrélation, impact sur la position du pic ?
Resultats Lya

C(rpar, rperp)

premiers résultats de physique de BOSS LyA !

Contraintes attendus pour full BOSS

BOSS dans le diagram de Hubble

Conclusions

- La physique des BAO est simple et bien comprise
- Elle fourni un étalon standard qui permet de contraindre la cosmologie avec des systématiques complémentaires aux SN
- BOSS LRG a déjà plus de 5x la statistique de SDSS II, le pic BAO est détecté sans ambiguïtés
- BOSS LyA fourni les premières observations de la distributions de matière à z~2.5, la fonction de corrélation mesurée s'accorde bien avec les attentes théoriques jusqu'à ~100 Mpc
- Premières contraintes cosmologiques et détection (ou pas!) du pic BAO LyA attendues pour juillet !

