Dark matter detection on the Galactic scale

Julien Lavalle

CNRS, Lab. Univers & Particules de Montpellier [LUPM], France

Dark matter searches at neutrino telescopes

CPPM, Marseille – 13 XII 2011

Cosmological abundance

* Chemical equilibrium as long as T>m

* Non-relativistic when x=m/T>1 => Boltzmann suppression of codensity

* Freeze-out when annihilation rate < expansion rate

* Thermal equilibrium as long as interaction rate > expansion rate

=> Relevant quantities: Expansion rate (<=> relativistic degrees of freedom)

$$\frac{dY}{dx} = -\frac{1}{3H} \frac{ds}{dx} \frac{m_{\chi}}{x^2} \langle \sigma v \rangle \left(Y^2 - Y_{\text{eq}}^2 \right) = -\sqrt{\frac{\pi}{45}} \frac{M_p m_{\chi}}{x^2} g_{\star}^{1/2} \langle \sigma v \rangle \left(Y^2 - Y_{\text{eq}}^2 \right),$$

$$H^2 = \frac{8\pi G}{3} \rho$$

$$\rho = \frac{\pi^2}{30} g_{\text{eff}}(T) T^4,$$

$$s = \frac{2\pi^2}{45} h_{\text{eff}}(T) T^3,$$

$$g_{\star}^{1/2} = \frac{h_{\text{eff}}}{\sqrt{g_{\text{eff}}}} \left[1 + \frac{T}{3h_{\text{eff}}} \frac{dh_{\text{eff}}}{dT} \right].$$

Jungman et al, 96

Relics of WIMPs

$$\langle \sigma v \rangle \approx a + b / \{ x \equiv m_{\chi} / T \}$$

Relic density set by full annihilation cross section Indirect detection sensitive to S-wave only In the Sun, WIMP capture set by elastic scattering => check sensitivity to P-wave scenarios (capture equation)

Dark matter in the Galaxy and around here

arXiv:0907.0018v2

A novel determination of the local dark matter density

> Riccardo Catena^a Piero Ullio^b

 $\rho_{\odot} \approx 0.4 \, \mathrm{GeV/cm^3}$

The dark matter density at the Sun's location

Paolo Salucci¹, Fabrizio Nesti², Gianfranco Gentile³, Christiane Frigerio Martins⁴

Mon. Not. R. Astron. Soc. (2011)

doi:10.1111/j.1365-2966.2011.18564.x

Mass models of the Milky Way

Paul J. McMillan*

Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP

arXiv:1111.3556v

The local dark matter phase-space density and impact on WIMP direct detection

Riccardo Catena^a and Piero Ullio^b

those for light dark matter particles and for particles scattering inelastically. As a general trend, regardless of the assumed profile, when adopting a self-consistent phase-space density, we find that rates are larger, and hence exclusion limits stronger, than with the standard Maxwell-Boltzmann approximation. Tools for applying our result on the local dark matter phase-space density to other dark matter candidates or experimental setups are provided.

Complementarity with gamma-rays

Fermi, 11

Name	1	b	d	$\overline{\log_{10}(J)}$	σ	ref.
	\deg .	\deg .	${ m kpc}$	$\log_{10}[\mathrm{GeV}]$	$V^2 \mathrm{cm}^{-5}$	
Bootes I	358.08	69.62	60	17.7	0.34	[17]
Carina	260.11	-22.22	101	18.0	0.13	[18]
Coma Berenices	241.9	83.6	44	19.0	0.37	[19]
Draco	86.37	34.72	80	18.8	0.13	[18]
Fornax	237.1	-65.7	138	17.7	0.23	[18]
Sculptor	287.15	-83.16	80	18.4	0.13	[18]
Segue 1	220.48	50.42	23	19.6	0.53	[14]
Sextans	243.4	42.2	86	17.8	0.23	[18]
Ursa Major II	152.46	37.44	32	19.6	0.40	[19]
Ursa Minor	104.95	44.80	66	18.5	0.18	[18]

HESS, 04

A&A 425, L13–L17 (2004) DOI: 10.1051/0004-6361:200400055 © ESO 2004

Alexey Boyarsky^{1,2}, Denys Malyshev³, Oleg Ruchayskiy⁴

Julien Lavalle, Conf title, date

Complementarity with Antimatter CRs

