Developments and future perspectives of coupling HPGe arrays with scintillators

F. Camera
Università di Milano and INFN sezione di Milano

OUTLINE

HPGe – Scintillator coupling in the past

HPGe – Scintillator coupling in the present days: some example

- LaBr₃:Ce detectors
- AGATA and LaBr₃:Ce at LNL
- AGATA at PRESPEC at GSI

HPGe – Scintillator coupling in the future

- PARIS array

Scintillators of the future

Conclusion and Perspective

HPGe and inorganic scintillators detectors (up to 2006)

HPGe detectors

Energy Resolution 0.2% at 662 keV

Time Resolution > 10 ns

Linearity 0.05% at 15

MeV

Density 5 g/cm³

Z(Ge) 32

- Small Crystals (3" x 3")
- Low efficiency
- Large 1EP
- large 2EP

Very Sensitive to neutron damage Complex handling

- Cooling
- FET failures

Very high costs

Generic Scintillator (up to 2006)

Energy Resolution > 6 % at 662 keV

Time Resolution ≅ 1 ns

Linearity $\approx 2\%$ (PMT)

Density high Z(Ge) high

- Very Large Crystals
- High efficiency
- Small 1EP
- No 2EP

Low Sensitivity to neutron damage

Easy handling

PMT non idealities

Low Costs

HPGe and inorganic scintillators detectors (up to 2006)

HPGe detectors

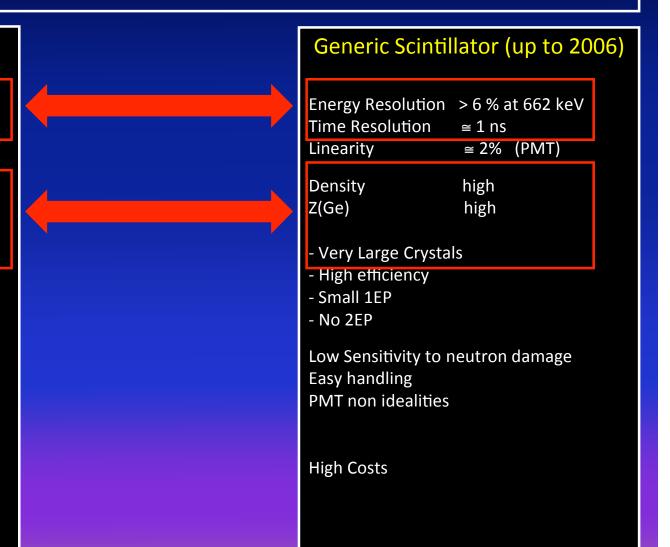
Energy Resolution 0.2% at 662 keV

Time Resolution > 10 ns

Linearity 0.05% at 15

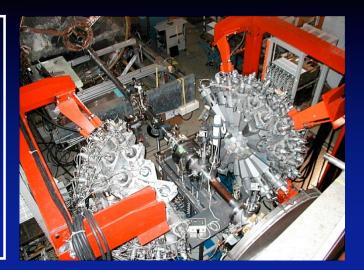
Me

Density 5 g/cm³


Z(Ge) 32

- Small Crystals (3" x 3")
- Low efficiency
- Large 1EP
- large 2EP

Very Sensitive to neutron damage Complex handling


- Cooling
- FET failures

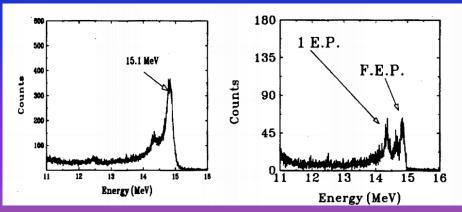
Very high costs

Scintillator Arrays - not for discrete γ spectroscopy -

- Crystal Ball, Spin Spectrometer, Medea, Hector,

Scintillators as a bulk active volume

Scintillators for Anticompton Shields


- HPGe ⇒ spectroscopic information
- Scintillators ⇒ yes/no information

Some tests for the Add Back technique

-The excellent resolution of HPGe is not destroied by the poor energy resolution of BGO

F. Camera et al NIM **A351**(1994)401-405

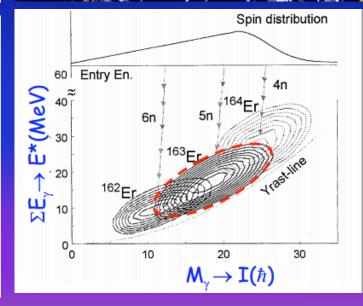
Physics Case

- ⇒ High Spin physics –
- ⇒ Very high density of gamma transitions

Scintillator Arrays as multiplicity filters

- Nordball ⇒ BaF₂ Ball

- GASP ⇒ BGO Ball


- Euroball ⇒ BGO Ball

-

'BaF₂ has appeared as a scintillator '

Multiplicity vs Sum-Energy plots

- First generation of ancillary detectors
- First use as:
 - HPGe coupled calorimeter
 - Cheap real 4π array
 - Time reference

Scintillator and HPGe coupled for nuclear structure studies – Specific physics case -

- HPGe provides high energy resolution
- Scintillator provides efficiency and time resolution
 - Measurement of high energy γ-rays
 - Neutrons and background rejection (in scintillator spectra)
 - Some physics cases receive large benefit from this union

Physics cases: GDR γ-decay

- Exclusive measurements
 - SD states feedings
 - Residue gated GDR

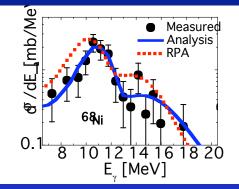
Hector + Nordball

Hector + PEX

Hector + Euroball

Scintillator and HPGe were complementary but substantially different in their use

Hector + Euroball (LNL and IRES)

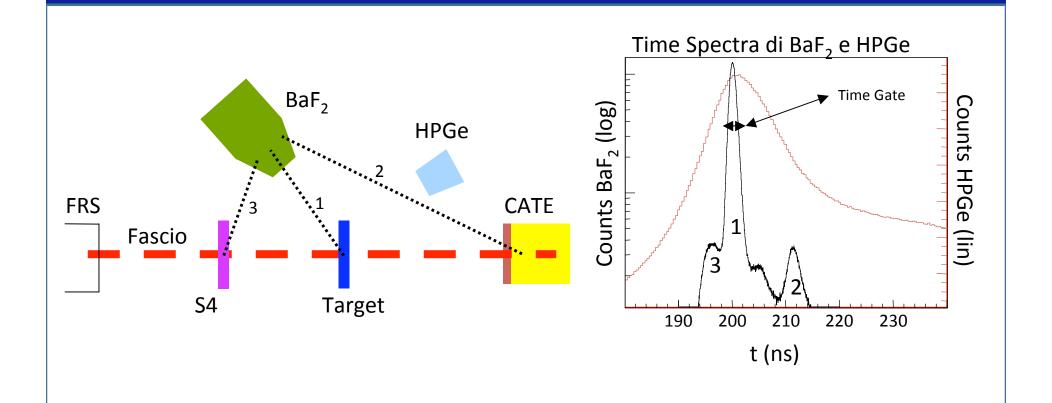

Radioactive Beam facilities

Very High background Low intensity beams Relativistic beams

- ⇒ good time resolution required
- ⇒ high efficiency required
- \Rightarrow high energy γ-rays

Few separated transitions transitions

O.Wieland et al. PRL 102, 092502 (2009)


P.Doornebal et al Phys. Lett. B647(2007)237

Radioactive Beam facilities

Very High background Low intensity beams Relativistic beams

- ⇒ good time resolution required
- ⇒ high efficiency required
- \Rightarrow high energy γ-rays

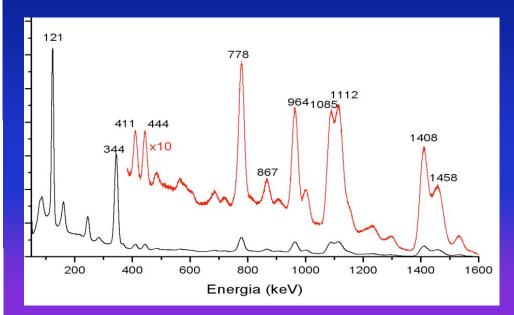
Few separated transitions transitions

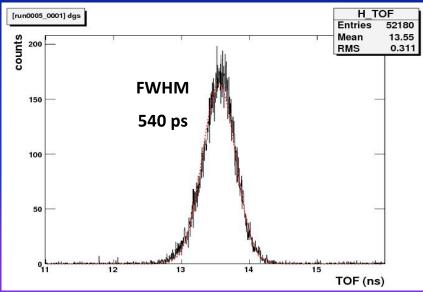
LaBr₃:Ce Scintillators

2001 – Discovery - Applied Physics Letter 79(2001)1573

2005 – 1" x 1" Commercially available

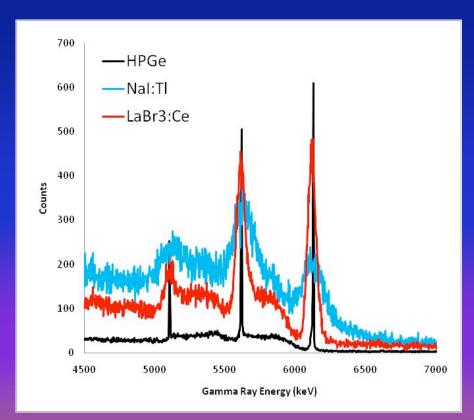
2006 – 3" x 3" Commercially available

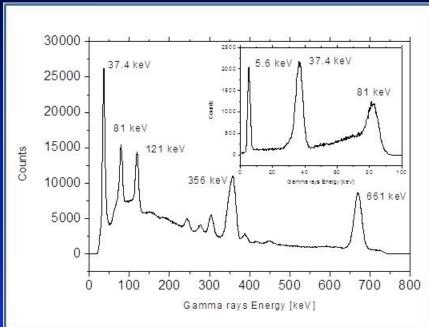

2007 – 3" x 6" Commercially available

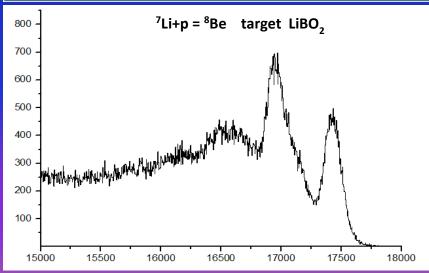

2008 – 3.5" x 8" Commercially available

History of LaBr₃:Ce started 10 years ago

History of large volume LaBr₃:Ce started only 3-4 years ago

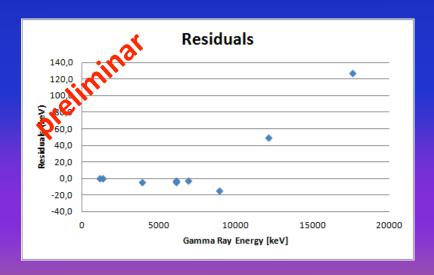


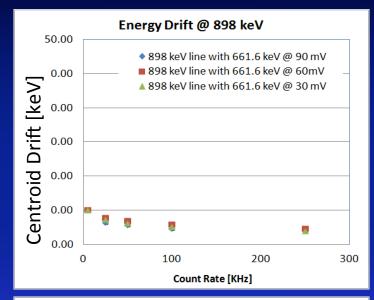


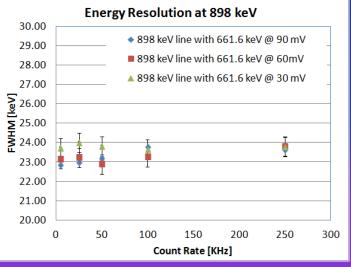

NIM A582(2007)554 NIM A602(2009) 520 NIM A629 (2011)157 ... and many others

LaBr₃:Ce Scintillators

HPGe still possesses an unmatched energy resolution but LaBr₃:Ce has a much better energy resolution if compared to whatever scintillator together with high efficiency and sub-nanosecond time resolution


LaBr₃:Ce Scintillators


LaBr₃:Ce can stand a count rate which is much higher than HPGe without a significative deterioration of the Energy resolution


 $5 - 250 \text{ kHz} \implies A.\text{Giaz et al to be submitted}$

5 – 2.2 MHz ⇒ Nocente et al to be submitted ⇒ Nocente et al. Rev. Sci. Inst. 81,10D321 (2010)

In case of very large dinamic range the PMT-VD non linearity if coupled to LaBr₃:Ce seems not to be a big issue

HPGe, inorganic scintillators and LaBr₃:Ce

HPGe detectors

Energy Resolution 0.2% at 662 keV

Time Resolution > 10 ns

Linearity 0.05% at 15

MeV

Density 5 g/cm³

Z(Gc) 32

- Small Crystals (3" x 3")
- Low efficiency
- Large 1EP
- large 2EP

Very Sensitive to neutron damage Complex handling

- Cooling
- FET failures

Very high costs

Generic Scintillator

Energy Resolution > 6 % at 662 keV

Time Resolution ≅ 1 ns

Linearity ≅ 2% (PMT)

Density high Z(Ge) high

- Very Large Crystals
- High efficiency
- Small 1EP
- No 2EP

Low Sensitivity to neutron damage

Easy handling

PMT non idealities

Low Costs

Large LaBr₃:Ce detectors

Energy Resolution ~ 3 % at 662 keV

Time Resolution ~ 0.5 ns

Linearity good

Density 5.2 g/cm³

Z(I) 57

- Large Crystals (3.5" x 8")
- high efficiency
- small 1EP (with collimator)
- No 2EP

No Sensitivity to neutron damage

High Count Rates

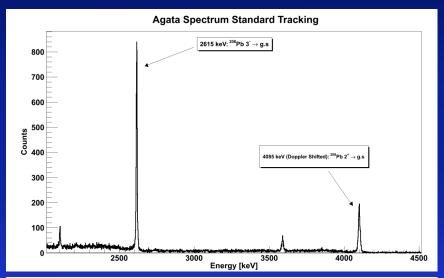
Easy Handling

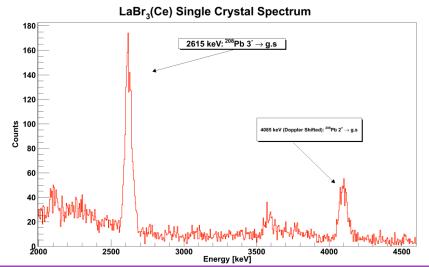
PMT non idealities

Medium Costs

A LaBr₃:Ce/scintillator array can increase the efficiency and makes more powerful the physics program of an HPGe Array

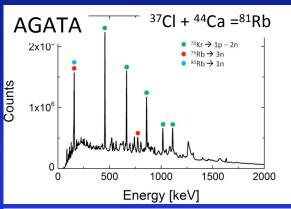
Scintillators not only for

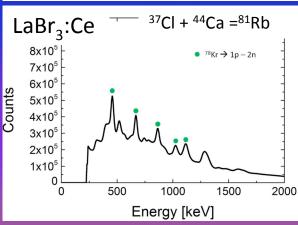

- Anticompton shields
- Multiplicity filter
- ancillary

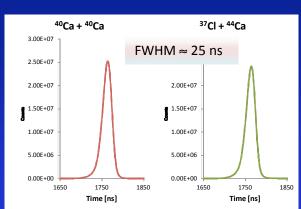

Scintillators as spectroscopic detectors

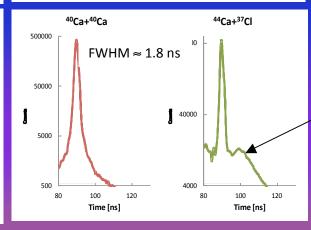
 γ decay of the GDR-GQR in inelastic scatterinc reactions $^{208}\text{Pb}(^{17}\text{O},^{17}\text{O'})^{208}\text{Pb}$ @ 20 MeV/u

Low density of γ lines and high energy γ -rays




A LaBr₃:Ce/scintillator array can increase the efficiency and makes more powerful the physics program of an HPGe Array

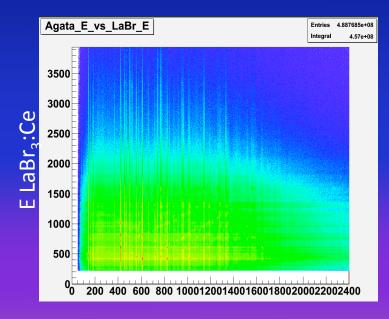

Scintillators not only for

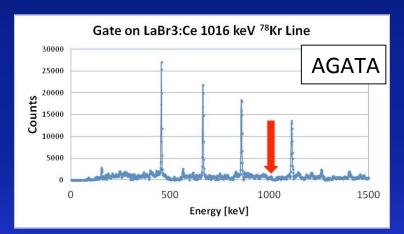

- Anticompton shields
- Multiplicity filter
- ancillary

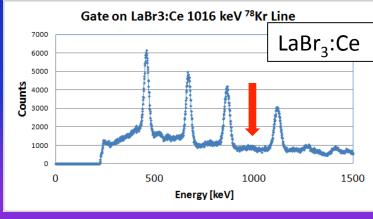
Scintillators as spectroscopic detectors

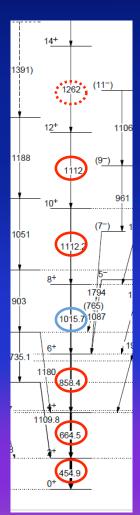
Isospin Mixing in the N=Z Nucleus ⁸⁰Zr at Medium Temperature

neutrons


Thank to S.Ceruti and A.Giaz


A LaBr₃:Ce/scintillators array can increase the efficiency and makes more powerful the physics program of an HPGe Array


Scintillators not only for


- Anticompton shields
- Multiplicity filter
- ancillary

Scintillators as spectroscopic detectors

A LaBr₃:Ce/scintillators array can increase the efficiency and makes more powerful the physics program of an HPGe Array

Scintillators not only for

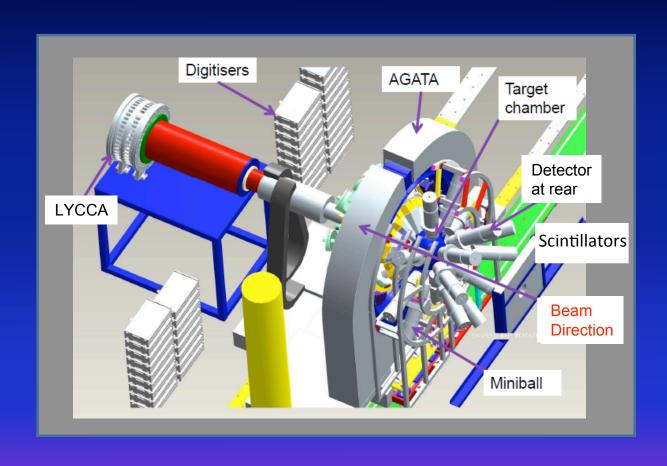
- Anticompton shields
- Multiplicity filter
- ancillary

Scintillators as spectroscopic detectors

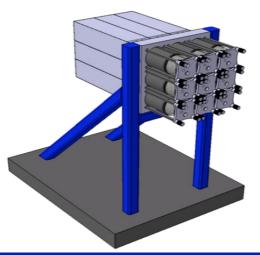
-5 Agata TC subtend a solid angle which is approximately twice that of 6 large volume LaBr3:Ce

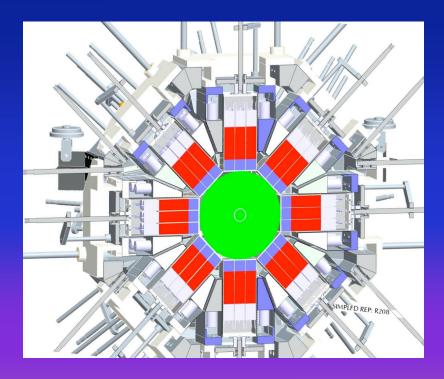
By coupling HPGe and scintillators it was possible a 50% increase in the solid angle with spectroscopic detectors capable to totally reject background

Net Gain (subset of data):

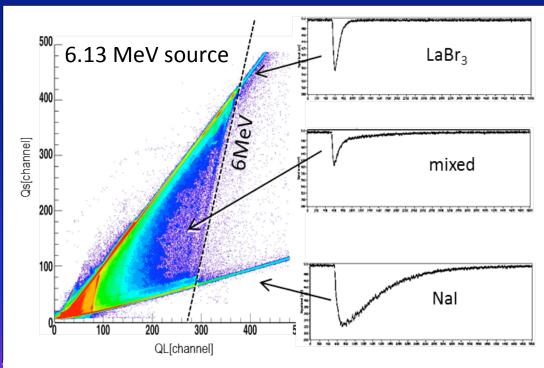

AGATA $M_{\gamma} \ge 2$ Events = 0.4 10^7 events

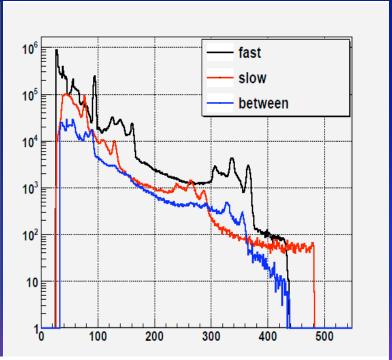
LaBr₃:Ce $M_{\gamma} \ge 2$ Events = 0.3 10^7 events AGATA & LaBr₃:Ce Events = 1.1 10^7 events


Trigger	Events
AGATA & LaBr ₃ :Ce	82%
LaBr ₃ :Ce M _γ ≥ 2	21%
Singles LaBr₃:Ce	2%
Singles AGATA	5%


The presence of LaBr₃:Ce produces three times more statistics usefull for the physics case

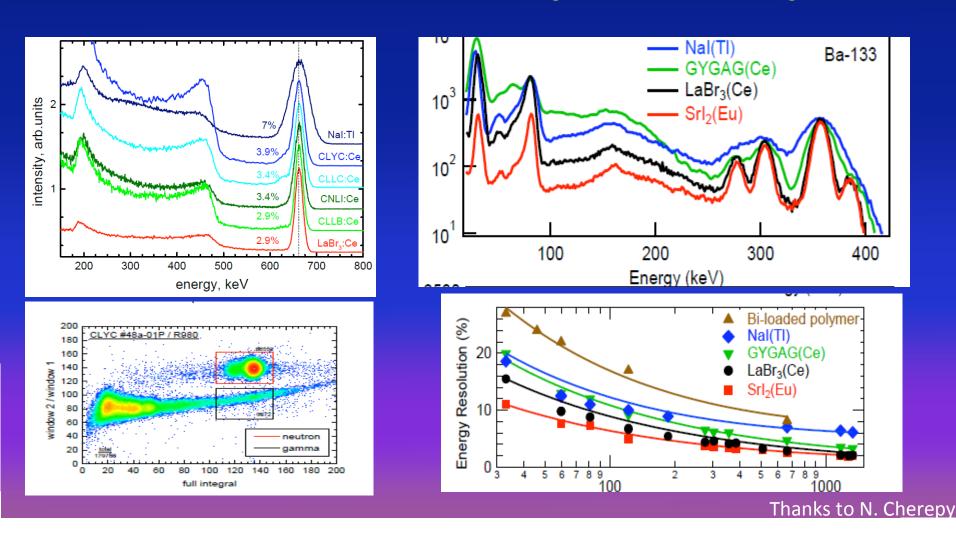
AGATA at PRESPEC (GSI)




The Phoswich geometry is a tradeoff between performance and costs.

- A. Maj et al., Acta Phys.Pol. B40, 565 (2009)
- http://paris.ifj.edu.pl

Nal (2"x2"x6") LaBr3 2"x2"x2"



plot for a phoswich detector obtained for a 6MeV gamma source unsing simple analog electronic

PARIS+ HPGE will be an extremely high performing instrument

New Scintillators in the future?

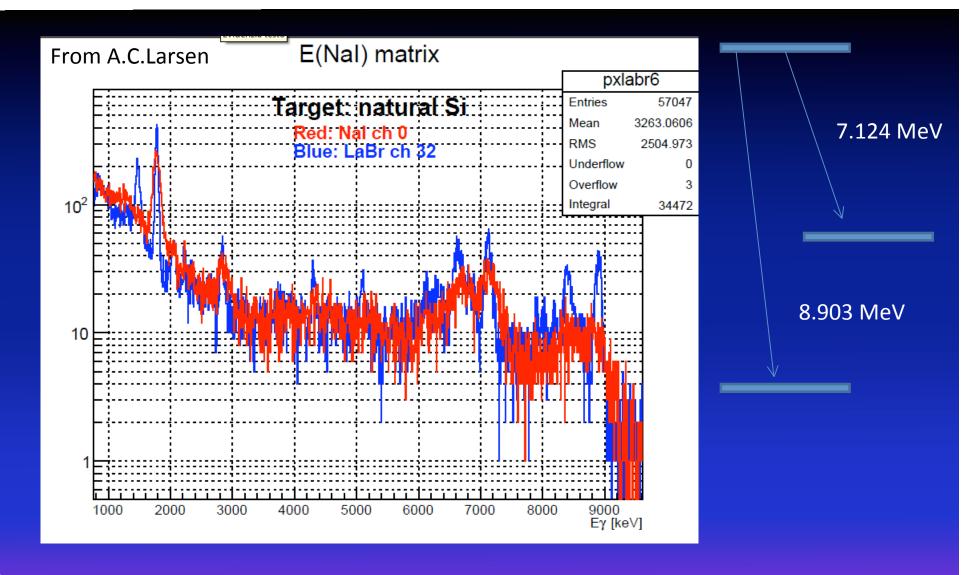
CLYC, CLLB, CLLC, CeBr₃, GYGAG, Srl₃

Conclusions

Before 2008 scintillator performances prevent them to be largely used as spectroscopic detectors. They provided:

- Active volume for anticompton shields
- A cheap almost full 4π coverage at high granularity
- main detectors for only specific physics cases (i.e. GDR)

After 2008 large volume LaBr₃:Ce became available


- LaBr₃:Ce are a breakthrough in scintillator tecnology

A LaBr₃:Ce/scintillators array can increase the efficiency and makes more powerful the physics program of an HPGe Array

- some examples

The story is not yet ended, R&D for LaBr₃:Ce is not finished and new performing scintillator material might be available in the future

Thank you

 γ -ray spectrum of ²⁸Si, gated in silicon on the 1st excited state at 8905 keV, (FWHM = 90-100 keV) with no time gate. Selection of excitation energy at 8.9 MeV made by gating with Si detector

"The difference between NaI and LaBr₃:Ce is really striking."