

On the edge of neutron detection

Grześ Jaworski

Faculty of Physics, Warsaw University of Technology HIL, University of Warsaw

EGAN 2012, Orsay, June 28th

The goal of the NEDA project:

to build the neutron array which will have neutron detection efficiency larger then the Neutron Wall?

 $\epsilon(1n) \approx 40\% (20-25\%),$ $\epsilon(2n) \approx 6\% (1-3\%),$ $\epsilon(3n) \approx 1\% (0.1\%),$

BC501A (proton-based) and BC537 (deuterated) scintillators considered 4 geometrically identical detectors bought by NEDA – 2x BC501A and 2x BC537, 5"x5" cylinders - unique opportunity for experimental comparison

Aims of the tests:

- \rightarrow to optimise digital PSD techniques: NGD and time resolution;
- → to measure efficiency, x-talk, time resolution, NGD capabilities for BC501A / BC537;
- \rightarrow to determine minimum sampling frequency for digital ToF;
- \rightarrow to check light to neutron energy dependence.

NEDA test setup

The tests were performed at LNL.

Measurements with pairs of detectors placed 1 m from ²⁵²Cf source.

BaF₂ used for timing purposes.

2 x BC501A (5" x 5" cylindrical test detector) 2 x BC537 (5" x 5" cylindrical test detector)

- SIS3302 100 MS/s, 16 bits 8 ch. digitizer (analog setup)
- SIS3350 500 MS/s, 12 bits 4 ch. digitizer
- DAQ by IFIC, J. Agramunt

Results of the tests:

 \rightarrow efficiency measured: proton based scintillator is ~22% more efficient;

- \rightarrow different n/ γ discrimination techniques studied;
- \rightarrow time resolution investigated;

Digital n-y discrimination

Artificial Neural Network

- 75 signal probes 2 ns distance, first 150 ns of the signal;
- 2 hidden layers: the first made of 20 nodes, the second 5 nodes;
- One output with a value in the interval 0-1 (0= gamma-rays, 1= neutrons)
- Networks for the two scintillators trained separately, using 1e5 signals (\approx 50% neutrons) each

Signals from the two scintillators

by P-A. Söderström

Neutron – gamma discrimination – comparison of the methods

by P-A. Söderström

Summary:

- \rightarrow BC501A more efficient by ~22%;
- \rightarrow digital PSD better then analog methods;
- \rightarrow BC537 gives less light, thus NGD algorithms works worse;
- \rightarrow so far only off-beam analysis;
- \rightarrow best NGD obtained with ANN.

TODO:

- \rightarrow time resolution with digital techniques;
- \rightarrow light to energy correlation;
- \rightarrow scattering between detectors.

Collaborators

J. Agramunt Ros, G. de Angelis, M. Clement, G. de France, A. Di Nitto, J. Egea, N. Erduran, S. Erturk, E. Farnea, A. Gadea, V. Gonzalez, T. Hüyük, J. Nyberg, M. Palacz, B. Roeder, P.-A. Söderström, E. Sanchis, R. Tarnowski, A. Triossi, R. Wadsworth, J.J. Valiente Dobon and G. J.

Thank you for your attention.

Validation of the simulations

Analog n- γ discrimination

Differences in pulse shapes for neutrons and gammas.

Well known, working in analog units: the Zero Cross-Over (ZCO) method

Signal shaped to bipolar & the zero crossing is extracted.

Usually apply 2-D gates, with ToF, for clean separation.

BC501A and BC537

Commonly used scintillator for neutron detection: C₈H₁₀ – BC501A, NE213, BC501 – xylene. Nordball NWall, NWall, NRing, NDA@HRIBF, NShell,

New option: deuterated scintillator: C_6D_6 – BC537, NE230, deuterated benzene. DESCANT (TRIUMF).

anisotropic scattering of n on d, may produce signals which are more correlated with the incoming neutron energy – could be used to improve multiple neutron discrimination.

