Confirmation of the molecular structure of excited bands in ²¹Ne

AGATA with TRACE

Carl Wheldon

School of Physics and Astronomy University of Birmingham

Clustering: a threshold effect

Tunnelling & octupole deformation in ²¹Ne

Results from GASP+ISIS

What makes a rotational band?

Gamma-ray spectroscopist	Particle spectroscopist
 Enhanced in-band transitions 	 Common cluster decay widths
 Rotational energy dependence 	 Rotational energy dependence
In-band branching ratios	 Decays to similar daughter states

Usually, without the in-band transitions, some degree of uncertainty over band structures remains. This is true for many cluster bands in light nuclei.

Neon-21 is UNIQUE. The structures can be assigned and studied unambiguously.
Level lifetimes are known → need branching ratios to measure transition probabilities.

Experimental set-up

Experimental set-up

Experiment – status and progress

Status June 2011:

- Five days of beam time.
- No significant issues; stable beam conditions.
- Energy and initial efficiency calibration made with ¹⁵²Eu.
- Due to accelerator problems for making the ⁵⁶Co source, still awaiting high-energy efficiency calibration.

Status June 2012:

- Co-56 source production July 2011, followed in August by calibration for efficiency at high energy (>3.5 MeV).
- Calibration of AGATA completed alignment of all segments for every run.
- Calibration of TRACE silicon detectors (E and Δ E).
- Reconstruction of missing segments via the replay of all the data (10 TB). (Copy of raw data in several locations.)
- Initial Doppler correction with TRACE positioning under-way.
- Energy-loss correction for protons through AI absorbers applied.

TRACE positioning

Doppler correction: beta

Beta for ²¹Ne obtained from the energy and position of particles in TRACE. The spikes are caused by noise in the the inner columns of the right ΔE pad.

Particle id and angles

Spectra from near-line analysis

Doppler correction with average beta (no proton angle considered).

Disclaimer: different collection times/runs (near-line analysis)!

Summary and outlook

- Successful beam time.
- Gamma- and particle-coincidences are working
- Full replay completed.
- Missing segments recovered and errant segments gainmatched for every run.
- Initial Doppler correction implemented in analysis code.
- Energy-loss correction in 136 µm Al absorbers is done.
- Work to do improving on the TRACE positioning coupled with beta optimisation.
- Require sorting of full statistics for optimisation.

Acknowledgements

Special thanks to <u>Daniele Mengoni</u> for <u>invaluable</u> help with the analysis and to Roberto Nicolini (Milan) for providing his TRACE positioning code.

Collaborators

- Birmingham: Tz. Kokalova, N. Ashwood, M. Barr, N. Curtis, J. Malcolm
- Krakow: N. Cieplicka
- Legnaro: G. De Angelis, D. Bortolato, A. Gottardo, V. Modamio, A. Pipidis,
 - E. Sahin, J.J. Valiente-Dobon
- Manchester: D. Cullen
- Milano: S. Brambilla, C. Boiano, A. Bracco, S. Leoni, R. Nicolini, S. Riboldi
- Padova: D. Bazzacco, E. Farnea, C. Michelagnoli, F. Recchia, C. Ur
- UWS: L. Capponi, D. Mengoni
 - and the AGATA Collaboration.

Clustering in ab initio models

GFMC²

Results from *ab initio* calculations: anti-symmetrised molecular dynamics (AMD) and Green's function Monte Carlo (GFMC).

¹Y. Kanada-En'yo *et al.*, Phys. Rev. C52 (1995) 628. ²R.B. Wiringa et al., Phys. Rev. C62 (2000) 014001.