Focal plane systems

Juha Uusitalo University of Jyväskylä

EGAN 25-28.07.2012

European Gamma and Ancillary detectors Network

In-flight Recoil Separators (@ barrier energies)

-Gas-filled recoil separators

- TASCA, GARIS, DGRS, RITU, BGS
- GARISII, AGFA, VAMOS (gas-filled mode), SHANS
- helium cooling, beam spot size~ 100 mm Ø
- Vacuum-mode separators
 - Velocity filters

- SHIP

- VASSILISSA (upgraded)
- beam spot size~ 100 mm Ø
- Mass separators
 - FMA, EMMA, JAERI-RMS
 - S3, MARA
 - beam spot size ~ 2mm dispersive plane
- Non-zero angle magnetic separators
 - multi-nucleon transfer, deep-inelastic....
 - VAMOS, PRISMA
 - IRiS

Gas-filled separator RITU

Vacuum-mode mass separator MARA

²⁰⁸Pb(⁴⁸Ca,2n)²⁵⁴No

- Only 2n channel, 2 µb, very strong fission competition

- Total rate ~ 1Hz/10 pnA

¹⁶⁹Tm(⁴⁰Ar,6n)²⁰³Fr

- Total rate 100-300 Hz/ 10 pnA, strong fission competition

⁹⁶Ru(⁷⁸Kr,p3n)¹⁷⁰Au

- Total rate 2-3 kHz/ 10 pnA

⁵⁸Ni(⁵⁴Fe,2n)¹¹⁰Xe

- Total rate > 1 kHz/ 1 pnA

⁴⁰Ca(²⁸Si,pn)⁶⁶As -Total rate > 1 kHz/ 1pnA

-Target position Ge detectors 5-10 kHz/crystal/ 10 pnA

²⁰⁸Pb(⁴⁸Ca,2n)²⁵⁴No

- Only 2n channel, 2 μ b, very strong fission competition
- $\sigma_{2n} \approx \sigma_{ER} << \sigma_{f}$
- Total focal plane rate ~ 1Hz/10 pnA
- at the target position single detector Ge rate 5-10 kHz / 10 pnA
- with digital electronics Ge-detectors could be used at 50 kHz
- Recoil gating

Time of flight

Figure 4.10: Gamma-ray singles spectra of ²⁵⁴No with data of both beam energies combined: (a) Recoil-gated γ -ray singles spectrum (b) No- α tagged γ -ray singles spectrum (c) The recoil-gated γ -ray singles spectrum for higher beam energy only.

⁹⁶Ru(⁷⁸Kr,p3n)¹⁷⁰Au

-Total rate 2-3 kHz/ 10 pnA

- Recoil gating and α (or proton tagging)
- maximum beam intensity limited by random correlations

Heikki Kettunen et. al.,

FIG. 2: Two-dimensional plot of the mother and daughter decay energies of correlated decay chains of the type $\text{ER} - p_m/\alpha_m - \alpha_d$ observed in the ⁷⁸Kr + ⁹⁶Ru reaction. (a) Correlations where the proton decay of mother nucleus is followed by an α decay of the daughter nucleus (ER - $p_m - \alpha_d$). (b) Correlated decay chains for α decays (ER - $\alpha_m - \alpha_d$). Maximum search times for the mother and daughter decays were 10 ms and 200 ms, respectively.

⁵⁸Ni(⁵⁴Fe,2n)¹¹⁰Xe

- -Total rate 1 kHz/ 1 pnA
- $-\sigma_{2n} \simeq 20 \text{ nb} \ll \sigma_{f} = n \times 100 \text{ mb}$
- Recoil gating and α - α tagging

Mikael Sandzelius et. al.,

Figure 3.2: Gamma-ray spectra showing prompt γ rays at the target position. The spectrum in the top panel is recoil-gated only, showing all the γ rays detected in the experiment from every fusion-evaporation residue giving a signal in the DSSD. The spectrum in the bottom panel is recoil-decay tagged. The prompt γ rays are correlated by requiring both the subsequent mother ¹¹⁰Xe and daughter ¹⁰⁶Te α decays in the same pixel in the DSSD as the recoil implantation. The three strongest transitions assigned to ¹¹⁰Xe are indicated, which cannot be resolved in the total recoil-gated spectrum. The selectivity is greater than 10^{-6} .

sf sf

Example 1. Emissive foil detectors (SeD)

Antoine Drouart DSM/DAPNIA/SPhN

Se-D active area 10x40 cm²

Secondary Electron Detector

Antoine Drouart DSM/DAPNIA/SPhN

Availability of largea area position sensitive MCPs ?

Two mylar foils neededTransmission losses due to wires

Fig. I-73. Cutaway view of the MWPC with the new anode and cathodes.

+ little space needed

FMA Focal Plane M/Q Spectrum

The TASISpec Detector Set-up

Details of the construction

Eur. Phys. J. A **17**, 537–558 (2003) DOI 10.1140/epja/i2002-10162-1 The European Physical Journal A

Alpha-decay studies of the new isotopes ¹⁹¹At and ¹⁹³At

H. Kettunen^a, T. Enqvist, T. Grahn, P.T. Greenlees, P. Jones, R. Julin, S. Juutinen, A. Keenan, P. Kuusiniemi, M. Leino, A.-P. Leppänen, P. Nieminen, J. Pakarinen, P. Rahkila, and J. Uusitalo

Department of Physics, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä, Finland

Energy [keV]

Fig. 5. a) A part of the energy spectrum for gamma-ray events observed in coincidence with any event within a 8 μ s time interval in the silicon detector. b) Gamma-ray energy spectrum of group C in fig. 3.

Odd-odd T=1 IAS - ⁴⁴V new data

- N=Z-2 (T_z=-1) nucleus ⁴⁸Mn: Z=23, N=21
- Mirror of ⁴⁴Sc: Z=21, N=23
- Gammasphere + Fragment Mass Analyser (Argonne N.L.)

- ⁴⁰Ca + ¹⁰B, 105 MeV, v/c ~ 6 %, E_{rec} ~ 70 MeV
- A/Q from dispersion, Z from Ion Chamber
- Z-selection essential....

$$\begin{array}{cccc} & & & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & &$$

Two MWPC:s and catcher foil TOF and Isomer tagging University of Manchester

S³ simulation; ${}^{48}Ca + {}^{248}Cm \rightarrow {}^{291,292,293}116$ with $q = 22 + ...26 + M/\Delta M \approx 300$

7

Focal plane detectors

Size is an interesting question

Si is cheap Electronics is not that cheap? (large size \rightarrow large number of channels) Many pixels \rightarrow low accidental count rate But: Need a reasonably high γ detection efficiency

An example: $S^3 \leq 10 \times 20 \text{ cm}^2$

GREAT 2 x 60 mm x 40 mm 60X40 DSSD strip pitch = 1000 μ m

160X160 DSSD 64 mm * 64 mm FMA ANL, strip pitch = 400 μm

AIDA Design "standard" configuration "compact" configuration 24 cm x 8 cm (or 3 x 8 cm x 8 cm) Si thickness = 1 mm, strip pitch = 625 μm, 3 x 128 x 128 >5000 channels

www2.ph.ed.ac.uk/~td/AIDA

DSSD for MARA 128 mm x 48 mm 1 mm strip pitch In total 176 channels

GREAT @ RITU DSSD 120 mm x 40 mm 2 x 40 x 60 = 200 channels

University of York

Talk by Panu Ruotsalainen

Available online at www.sciencedirect.com

Nuclear Instruments and Methods in Physics Research A 565 (2006) 630-636

Recoil-beta tagging: A novel technique for studying proton-drip-line nuclei

A.N. Steer^{a,*}, D.G. Jenkins^a, R. Glover^a, B.S. Nara Singh^a, N.S. Pattabiraman^a,
R. Wadsworth^a, S. Eeckhaudt^b, T. Grahn^b, P.T. Greenlees^b, P. Jones^b, R. Julin^b, S. Juutinen^b,
M. Leino^b, M. Nyman^b, J. Pakarinen^{b,1}, P. Rahkila^b, J. Sarén^b, C. Scholey^b, J. Sorri^b,
J. Uusitalo^b, P.A. Butler^c, I.G. Darby^c, R.-D. Herzberg^c, D.T. Joss^c, R.D. Page^c, J. Thomson^c,
R. Lemmon^d, J. Simpson^d, B. Blank^e

Fig. 2. A schematic side view drawing of GREAT showing recoiling nuclei implanting in the DSSSD, subsequent β -decay products are then detected in the PGD and Clover detectors.

Fig. 5. (Colour online). Highest energy of ionising particle recorded in the PGD vs. energy loss in the DSSSD.

Table 1

Beta decay properties of nuclei produced in the ${}^{36}\text{Ar} + {}^{40}\text{Ca}$ reaction at $E_{\text{beam}} = 103 \text{ MeV}$, including the reaction channel, half-life, and Q(EC) value, where known

Nucleus	Channel	Half-life	Q(EC) (MeV)	σ (mb)
⁷⁴ Rb	pn	65 ms	10.4	0.260
⁷⁴ Kr	2p	11 min	3.14	3.01
⁷⁴ Sr	2n	$> 1.2 \mu s$	_	0.014
⁷³ Kr	2pn	12 s	6.67	5.62
⁷³ Br	3p	3.4min	4.66	41.8
⁷² Kr	α	17.2 s	5.04	0.044
⁷² Br	3pn	78.6 s	8.7	0.439
⁷² Se	4p	8.4d	0.355	6.28
⁷¹ Br	αp	21.4 s	6.5	2.20

Cross-sections were estimated using the fusion evaporation code, ALICE. This code overestimates the cross-section by a factor of \sim 20, however, the relative yields are in accordance with the observed experimental information.

A.N. Steer et al. / Nuclear Instruments and Methods in Physics Research A 565 (2006) 630-636

Fig. 4. Spectra showing the enhancement of the ⁷⁴Rb reaction channel under successive gating conditions at $I_{\text{beam}} = 4 \text{pnA}$: (a) recoil-gated, (b) recoil-gated with a time coincidence window of 100 ms between the recoil and β -decay, and (c) β -particle energy between 3 and 10 MeV measured in the PGD, in addition to the 100 ms time gate.

633

UoYTube, University of York

Figure 2.52: Distribution of evaporated protons from reactions ending in the production of ⁷⁸Y or ⁷⁸Sr. Only those protons belonging to recoils transmitted to the implantation detector (without slits) are taken into account. Counts correspond to 1 · 10¹⁰ beam particles.

20

15

10

5

E_k [MeV]

Counts / 10*

Figure 2.53: a) Proton and alpha particle rates in the reaction ⁴⁰Ca(⁴⁰Ca,2n)⁷⁸Zr and b) veto efficiency of the veto detector as a function of its length for two channels. The length of the detector is here the angle in which the detector is seen from the target. The center of the detector is at the position of the target. Rates correspond to a 40 Ca current of $1 \cdot 10^{10}$ 1/s.

The PRISMA Spectrometer

PRISMA - CLARA Setup

PRISMA

Angular acceptances	$\Delta \theta \approx \pm 6^o \ \Delta \phi \approx \pm 11^o$		
Solid angle	≈ 80 msr		
Distance target - FPD	7 m		
Energy acceptance	± 20%		
Resolving power	p/∆p ≈2000		
Mass resolution	1/200 (measured)		
Energy resolution	1/1000 (via ToF)		
Z resolution	≤ 1/60 (measured)		
Count rate capability	up to 2x10 ⁵ sec ⁻¹		

CLARA

24 to 25 Clovers setup Efficiency ~ 3 % @ 1.3 MeV Peak/Total ~ 45 % Position θ = 103°-180° FWHM ~ 10 keV for E_y= 1.3 MeV @ v/c = 10%

201 Fully digital channels 90 Si channels 111 Ge channels

 48 Ca + 175 Lu \rightarrow 223 Pa* \rightarrow 220 Pa + 3n

