

EDAQ for AIDA and LYCCA

Ian Lazarus (STFC Daresbury) Contact: <u>Ian.Lazarus@stfc.ac.uk</u>

Overview

- What is AIDA
- What is LYCCA
- EDAQ for AIDA and LYCCA
- Interconnecting with other EDAQ

AIDA: introduction

Advanced Implantation Detector Array (AIDA)

UK collaboration: University of Edinburgh, University of Liverpool, STFC Daresbury Laboratory & STFC Rutherford Appleton Laboratory

- SuperFRS
 - Exotic nuclei ~ 50 200MeV/u
 - Implant decay correlations
 - Multi-GeV implantation events
 - Subsequent low-energy decays
 - Tag events for gamma and neutron detector arrays

Detector: multi-plane Si DSSD array wafer thickness 1mm 8cm x 8cm (128x128 strips) *or* 24cm x 8cm (384x128 strips) Instrumentation: ASIC low noise (<12keV FWHM), low threshold (0.25% FSR) 20GeV FSR *plus* (20MeV FSR *or* 1GeV FSR) fast overload recovery (~μs)

spectroscopy performance

time-stamping

AIDA General Arrangement

Implantation detector for RDT

Slide from Tom Davinson

2 Configurations: 8x8, 8x24cm

AIDA Mechanical

Lund-York-Cologne CAlorimeter (LYCCA)

Fragment identification after the secondary target High-resolution fragment - gamma (- particle) spectroscopy

50-100 MeV/u range

Distance secondary target - fragment array: ~3.5m

Modular. CsI and DSSD For E-dE

LYCCA

Initially Mesytec electronics Later AIDA

AIDA test on LYCCA (64 ch only)

-

AIDA FEE card (NUSTAR, DeSpec)

FEE width: 8cm Prototype – air cooling Production – recirculating coolant Gbit ethernet, clock, JTAG ports Power

FEE for AIDA (NUSTAR, DeSpec)

AIDA ASIC (NUSTAR)

Braga et al. 2009 IEEE NSS conf record, VOLS 1-5 P 1924-8

Layout

AIDA ASIC:

- •625um pitch
- 16 channels
- •2 channels/strip
- •Mux'ed analogue output
- Direct digital output for external FADC
- •2 ranges: 0-20MeV/1GeV (switchable) and 0-20GeV (fixed)
- •AMS 0.35um CMOS

Connecting new TS software triggered systems to existing systems

Legacy equipment usually needs an early coincidence trigger. But TS software trigger has latency. There are 2 solutions:

How to solve the problem

• Solutions(1):

- Standardise on either hardware triggered or free-running systems?
 - Many reasons why we can't do this:
 - Even NUSTAR isn't all new build- legacy equipment
 - Needs investment of effort and money
 - Why change what works? (People like what they have; need a good reason to change, not just "progress".)
 - Free running users like running with no dead time and don't want to go back to hardware triggered systems

How to solve the problem

- Solutions(2):
 - Modify free-running DAQ systems to generate early information
 - More connections (1 per channel/ASIC/Si ladder)
 - More cost
 - More complexity
 - Grounding needs care or isolation

How to solve the problem

• Solutions(3):

- Modify hardware triggered systems to share common scaler/clock with free running DAQ
 - Extra connection (but only 1 set per system)
 - Small cost

- Small change to GUI and slow control
- Grounding needs care or isolation
- Few extra parameters in each event
- Software trigger needs merge + common readout
- No data reduction in triggered systems

Connecting AIDA/LYCCA to MBS- Option 2 (Online Merge)

Draft 3 updated 1-3-2011

Conceptual design follows discussion between Ian , Nik and Stephane at GSI and discussion at DL between Vic, Patrick, Simon and Ian

Linked scalers to correlate 2 systems

AIDA Status

- FEE cards built and tested (for AIDA and LYCCA)
- FEE including ASICs tested in beam
- Waiting for more beam
- DAQ working (tested in beam)
- VHDL improvements (using PSA option)
- MACB cards 1st batch built and tested

