Magnetic strength and shell evolution in light nuclei

Dennis Mücher Physics Department E12 **TU München**

Technische Universität Müncher

B(E2) values off n-rich Ti-isotopes: are neutrons closed at N=34 ?

$f_{5/2} p_{3/2} p_{1/2} g_{9/2}$ for p+n jj4c interaction (B. A. Brown)

J^{π}	А	$\pi(f_{5/2})$	$\pi(p_{3/2})$	$\nu(f_{5/2})$	$\nu(p_{3/2})$	$\nu(p_{1/2})$	$\nu(g_{9/2})$
0+	0.146	0	9	4	4	9	9
01	0.083	0	2	6	4	2	0
	0.065	2	0	4	4	0	4
	1.0	0.61	1.04	4.35	3.53	1.27	2.85
0^{+}_{2}	0.298	0	2	6	4	2	0
-	0.076	2	0	4	4	0	4
	0.054	0	2	5	3	2	2
	1.0	0.54	1.17	4.95	3.54	1.44	2.07

						N(ZII)					
if "closed" configuration on top of 0 ⁺ ₂ : g (2 ⁺) large !											
shell model:											
g(2	+ ₁)=(0.276,	config	uration	0" < 10 ⁻¹⁰						
g(2	+)=(0.10,	config	uration	"642	0" < 10 ⁻¹⁰					
g(2	+_\(0 0 0	oopfig	uration	640	O" largest					
(18	I_i^{π}	Exp't.	FPD6	KB3	GXPFA	JJ4B					
			fp	fp	fp	$p_{3/2}f_{5/2}p_{1/2}g_{9/2}$					
	2_{1}^{+}	$+0.38(2)^{a}$	+1.52	+1.83	+1.89	+0.276					

DM et al, Phys. Rev. C 79, 0543

shell model: B(M1;2⁺_m \rightarrow 2⁺₁) = 0.18 μ_N^2

²⁶Ne: E(2⁺₁)=2.02 MeV E(2⁺₂)=3.69 MeV B(E2)=6.18(8) W

we obtain single minimum with $|\epsilon_{\pi}-\epsilon_{v}| = 2.5 \text{ MeV}$

²⁴O: E(2⁺₁)=4.72 MeV (unbound)

N=16 (24O) is closed, 28O unbound ! \rightarrow effect on semi-magic 26Ne?

²⁶Ne, Coulomb Excitation @ RIKEN
J. Gibelin et al., PRC 75, 057306 (2007)
shell model: 2⁺, has isovector character

Experimental setup: T-REX + MINIBALL

- Target: 40 µg/cm² ³H (2n- and 1n-transfer) contained in a 500 µg/cm² Ti-foil (Coulex)
- Fully equipped T-REX allows to combine Coulex and transfer experiments.

- Segmented ∆E E Si-telescopes for particle identification (p, d, ...)
- 12µm mylar protection foil in front of Forward Barrel
- Segmented Forward CD for Coulex
- MINIBALL for γ-rays

Analysis of IS510 by **S**. **Klupp**, E12, TU Munich

high-intensity (10⁷ /s on tai ⁷²Zn beam: issue with "flash" of secon electrons in T-REX: solved using high-power tritium-target-ladder (+300

Analysis of IS510 by Stefanie Klupp, E12, TU

Coulex: First results

measurement time!

MINIBALL-spectra of ⁷⁴Zn after 2n transfer, gated on protons 2 1.8 1.6 1.4 Counts / 4.0 keV Analysis of IS510 by Stefanie Klupp, E12, TU gate o Munich 2^{+}_{1} 1.2 0.8 0.6 Counts / 4.0 keV 2⁺₁→0⁺₁ upgrade of T-0.4 0.2 **REX** needed for $4^{+}_{1} \rightarrow 2^{+}_{1}$ 0 1000 500 1500 2000 HIE ISOLDE 10² $2^+_x \rightarrow 2^+_1$ tan ha 2099→2 Simulation (only transfer p) Г¹⁰⁰⁰⁰ Е [ke ш 8000 10² 6000 4000 10 2000 600 800 1000 1200 1400 1600 Ε_γ [180 120 130 140 150 160 170 110 θ [deg]

)*1

Can we measure magnetic moments of short-lived 2⁺_{ms}

Scintillaor: LYSO (Cerium-doped Lutetium Yttrium Orthosilicate) collab. Prof. S. Ziegler, medical physics, TU Munich

+ (i.e. glue) Avalanche Photodiode (Hamamatsu S8664)

no radiation damage after 10¹⁰ events, 100 kHz rate)

Proposal for MINIBALL @ MLL Munich (15 MeV Tandem)

topics:

normalisation measurements using Recoil in Vacuum after Coulex (in prep. for e.g. HIE-ISOLDE) (A. Jungclaus, Madrid)
magnetic moments of ultra-fast states (DM)
Lifetimes of astrophysical relevant states using cooled 3He targets (S. Bishop, E12 Munich)

• X-ray multiplicities of evaporation residues (W. Henning)

Setup:

• 4 MINIBALL triple cluster detector (72 Segments)

• trigger: all segments; Mesytec Shaper

• readout: Mesytec ADC; multievent readout

Working on a possible proposal for AGATA @ GSI:

identify 2⁺ state build on 0⁺₂ for nucleus in the "island of inversion) (³²Mg, neutron-rich Fe)

Thanks for your attention !

E12 (TUM)

R. Krücken, W. Henning, R. Gernhäuser, K. Nowak, S. Klupp,

H. Schmeiduch, S. Reichart, M. Bendel, L. Maier, C. Herlitzius,

S. Bishop

IS 510 (ISOLDE)

D. Mücher¹, R. Krücken¹, K. Wimmer¹, V. Bildstein¹, M. Albers²,
L. Bettermann², A. Blazhev², S. Bönig³, J. Eberth², C. Fransen², R.
Gernhäuser¹, K. Gladnishki⁴, S. Das Gupta⁵, K. Hadynska⁷, M. Hass⁸,
J. Iwanicki⁷, J. Jolie², A. Jungclaus⁹, V. Kumar⁸, T. Kröll³, J. Leske³,
G. Lo Bianco⁵, P. Napiorkowski⁷, B.S. Nara Singh⁶, K. Nowack¹, R.
Orlandi⁹, J. Pakarinen¹⁰, N. Pietralla³, G. Rainovski⁴, M. Scheck³, K.
Singh⁸, J. Srebrny⁷, M. von Schmid³, K. Wrzosek-Lipska⁷, N. Warr²,
M. Zielinska⁷, and the REX-ISOLDE collaboration

and N. Pietralla, M. Scheck (TU Darmstadt) G. Rainowski (Sofia) A. Jungclaus (Madrid)

Maybe we can learn from the Isospin formalism ?

monopole Majorana exchange operator (Wigner, SU(4) scheme) 2^{+}_{x} T=1 $M = \sum_{i < j} P_{ij} \approx T(T+1)$ T=0even-even N=Z nucleus Isospin: protons and neutrons behave the same. algebra: $SU_T(2)$ energy difference: (a)symmetry energy T(T+1) (+extra binding from Wigner energy) origin: high T <--> high permutation symmetry in charge <--> low symmetry in space+spin

$$F \cdot F = N - N_{\pi}N_{\nu} + [(T \cdot T)^2 - T_0^4 - 2nT_0^4]$$

2 protons and 2 neutrons in same orbi F=0 <--> T=1 F=1 <-->T=0 (+ 20% T=2)

even-even $N \neq Z$ nucleus F-Spin: proton-bosons and neutron bos behave the same algebra: $SU_F(2)$ energy difference: (a)symmetry energy

$$E_{\rm s}=K(Z-N)^2/A$$

$$=\int \left[K(\rho_{\rm p}-\rho_{\rm n})^2/(\rho_{\rm p}+\rho_{\rm n})\right]\,{\rm d}\tau$$

A. Faessler et al, Phys. Lett 166B, 4 (1985)

$$V_{pn} = \sum_{j_p j_n j'_p j'_n JM} \langle j_p j_n | V_{pn} | j'_p j'_n \rangle_J A^{\dagger}(j_p j_n JM) A(j'_p j'_n JM).$$

$$f^{(0)}(j_p j_n, j_p j_n) = \frac{\sum_J (2J+1) \langle j_p j_n | V_{pn} | j_p j_n \rangle_J}{\sqrt{(2j_p+1)(2j_n+1)}}$$

<
$$J^{+}_{\rho} | M_{\rho\rho} | J^{+}_{\rho} > = const.$$

< $J^{+}_{\rho} | M_{\rho\eta} | J^{+}_{\rho'} > = const.$

shift due to monopole: $E(2^{+}_{ms}) \rightarrow E(2^{+}_{ms})+4\alpha\beta\delta$

complete mixing: $\alpha\beta=1/2$

 $E(2^+_{ms}) \rightarrow E(2^+_{ms})+2\delta$

 $< 0^{+}_{\pi} | M_{pn} | 0^{+}_{v} > = \delta$

K. Heyde, J. Sau, PRC 33, 3 (1986), p. 1050 seniority u=2 shell-model states, single-j:

$$2_{\pi}^{+} = (j_{\pi})_{=2}^{n_{\pi}}; 2^{+} (j_{\pi})_{=0}^{n}; 0^{+} 2^{+}$$
$$2^{+} = (j_{\pi})_{=2}^{n_{\pi}}; 0^{+} (j_{\pi})_{=0}^{n}; 2^{+} 2^{+}$$

switch on interaction:

$$V_{\pi} = \frac{2_{\pi}^{+}}{-} \frac{Q_{\pi} \cdot Q}{\frac{1}{4}(\pi - 1)^{2}} + \frac{2_{\pi}^{+}}{-} \frac{Q_{\pi} \cdot Q}{\frac{1}{4}(\pi - 1)^{2}} + \frac{2_{\pi}^{+}}{-} \frac{Q_{\pi}^{+}}{-} \frac{Q_{\pi}^{+}}{-$$

$$=\int [K(\rho_{\rm p} - \rho_{\rm n})^2/(\rho_{\rm p} + \rho_{\rm n})] dr$$

A. Faessler et al, Phys. Lett 166B, 4 (1985)

K. Heyde, J. Sau, PRC 33, 3 (1986), p. 1050 seniority u=2 shell-model states, single-j:

$$2_{\pi}^{+} = (j_{\pi})_{=2}^{n_{\pi}}; 2^{+} (j_{\pi})_{=0}^{n}; 0^{+} 2^{+}$$
$$2^{+} = (j_{\pi})_{=2}^{n_{\pi}}; 0^{+} (j_{\pi})_{=0}^{n}; 2^{+} 2^{+}$$

switch on interaction:

$$V_{\pi} = \frac{2_{\pi}^{+}}{-} \frac{Q_{\pi} \cdot Q}{\frac{1}{4}(\pi - 1)^{2}} + \frac{Q_{\pi} \cdot Q}{\frac{1}{4}(\pi - 1)^{2}} + \frac{Q_{\pi} Q}{\frac{1}{4}(\pi - 1)^{2}}$$

$$=\int [K(\rho_{\rm p} - \rho_{\rm n})^2/(\rho_{\rm p} + \rho_{\rm n})] dr$$

A. Faessler et al, Phys. Lett 166B, 4 (1985)