

LHCb Computing activities

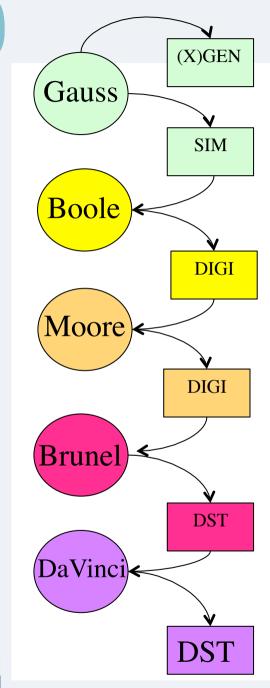
Marco Cattaneo CERN - LHCb On behalf of the LHCb Computing Group (update of talks by Philippe Charpentier in March 2011)

Summary of Computing activities

- Simulation
 - Mainly used for identifying background and evaluating acceptances and efficiencies
 - Simulates an ideal detector, however with realistic geometry
 - Event generation and detector response tuned to real data
 - * Iterative process, depends on the data taking year
- Real data handling and processing
 - Distribution to Tier1s (RAW)
 - Reconstruction (SDST)
 - Stripping and streaming (DST+ μ DST)
 - Group-level productions (DST+µDST)
- User analysis
 - MC and real data processing
 - Detector and efficiency calibration
 - End-user analysis (usually off-Grid: Tier3 or desktop)

- Small processing time, but high trigger rate
 - **30 kHS06 required for reconstruction**
 - ☆ Typically 2500 CPU slots
 - TierO could not provide the necessary CPU power
 - Use Tier1s as well for reconstruction (first pass)
 - * Has been extended to Tier2 for reprocessing
- Most problems for analysis jobs are related to Data Management
 - SE accessibility, scalability, reliability...
 - Restrict the number of sites with data access
 - Use Tier1s for analysis
- High requirements on simulated data
 - Background identification, efficiency estimation for signal
 - Typically 1700 HS06.s per event
 - Use all possible resources for simulation
 - * Priority given to Tier2, but used also to smooth usage at Tier1

The (original) LHCb Computing Model



Software distribution

- Applications software distribution:
 - CVMFS (new)
 - Software installed (and eventually removed!) in cvmfs as part of software release procedure
 - * LHCb was early adopter, extremely happy with it
 - * stability, scalability, availability
 - Installation of tar balls in shared areas
 - * Automated by SAM jobs
 - * Exception: CCIN2P3 required manual installation in AFS
 - * Availability of shared areas is one main cause of job failures
 - * Software removal not obvious
 - LHCb would like CVMFS everywhere
 - * But tar ball possibility will remain
- Conditions database:
 - Real time replication of new conditions via Oracle streams
 - * Needed only when running on new data
 - * Looking at FronTier
 - SQLite database regularly distributed as a software package
 - No Oracle access needed when running on older data, e.g. reprocessing, or simulation

o **5 steps jobs**

- Gauss: simulation, based on Geant4
- Boole: digitisation
- Moore: trigger
- o Brunel: reconstruction
- DaVinci: stripping (single stream)
- Any file may be saved, usually only the final DST (uploaded to CERN or "nearest" Tier1)
- o 100 to 200 events per job
- o 5 to 10 hours duration
- 40 to 80 MB per file
- Merging required (see later)

Simulation jobs

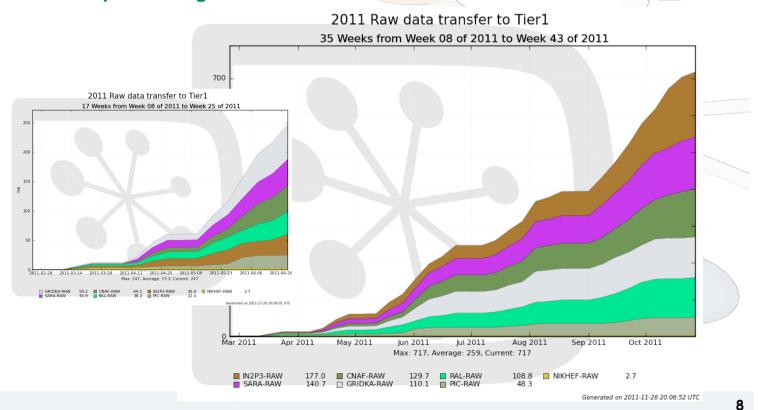
(X)GEN Ο Gauss SIM Boole Ο DIGI Moore DIGI Brunel DST DaVinci DaVinci<mark></mark>

DST

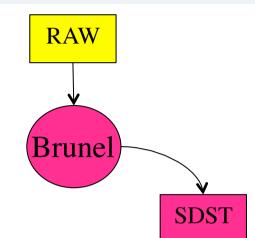
Filltered simulation

- Huge productions (~100M events) for background studies
 - Cannot afford disk space to store them all
- Only interested in events that pass trigger and stripping
 - Run through full chain but with additional selection step
 - Very few events (1-2 events per job selected)
 - 5-10 hours per job
 - ~1MB per file

DST

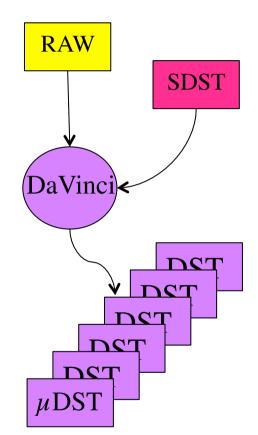

LHCb Computing activities

RAW data distribution


- ~700 TB of physics RAW data collected in 2011
- Distributed immediately to Tier1s
 - A full run (1 hour) goes to a single Tier1
 - RAW data share according to CPU pledges of Tier1s
 - * When a Tier1 is unavailable, share temporarily set to 0
 - * But share must be recovered later, affects future CPU share, when reprocessing

LHCb Computing activities

Reconstruction jobs



- 1 step jobs
- One input file: copy to local disk
- Brunel: reconstruction
 - Prompt reconstruction: requires access to Oracle CondDB for latest conditions
 - Reprocessing: SQLite files in software shared area
- SDST saved (local Tier1)
 - local T1D0 (LHCb-Tape)
 - single copy, constrains where further processing can run
- RAW files up to 3 GB (45,000 events)
- 2s per event: 1 day jobs
- SDST: 80% of RAW size

- One step jobs
- Multiple input files (e.g. 4 SDSTs)
 - RAW files required as well
 - All files must be present on disk cache (LHCb-Tape, possibly staged)
 - Job throughput limited by cache size and/or number of disk spindles
 - Access by protocol (xroot, dcap...)
 - Memory limited
- DaVinci: stripping and streaming
 - Around 10 to 13 streams
- (μ)DSTs saved (locally)
 - Temporary TOD1 (LHCb-Disk)
- Sum of DSTs: ~20% of RAW size
 - Individual files small (10-100's MB)
 - Merging required

Memory limitations of stripping jobs

Memory

• Big improvement by moving to ROOT persistency (as seen in Stripping16 validation), but memory usage still 20% too much.

・ロマ・山マ・山マ・山マ・

Merging jobs

- Automatically generated from job output
 - Simulation
 - Stripping
- Typically 5 GB files
 - For real data, only merge data from the same run
 - Run duration can easily be adjusted online
 - * was 1 hour in 2011 (10 Mevts, ~250 RAW files of 3 GB)
- Merged files uploaded locally to TOD1
 - LHCb-Disk

Data replication

- Performed by a data driven transformation
 - Same mechanism as productions
 - ☆ See Federico Stagni's talk at ACAT 2011
- Distribution policy implements the LHCb Computing Model
 - RAW files: one Tier1 from the Tier0 replica
 - MC: 3 Tier1 (or CERN) TOD1 replicas, 2 T1D0 archive copies
 - ☆ Sites selected randomly
 - * Foresee to implement space driven policy
 - Real data: 4 TOD1 replicas (CERN + Tier1), 2 T1D0 archives
 - Differs from CM (should be one replica per Tier1)
 - Adaptation following larger event sizes
 - * Each run is distributed to the same sites
 - * Replicas reduced to two copies for previous processing
- Replication using FTS

• Two types of central group productions are foreseen:

• Group selections

- Similar to stripping, but with stripped DST as input
- Low CPU use, I/O intensive
 - 🖈 Input data resides on Ihcb-disk
 - * 20-100 input files per job

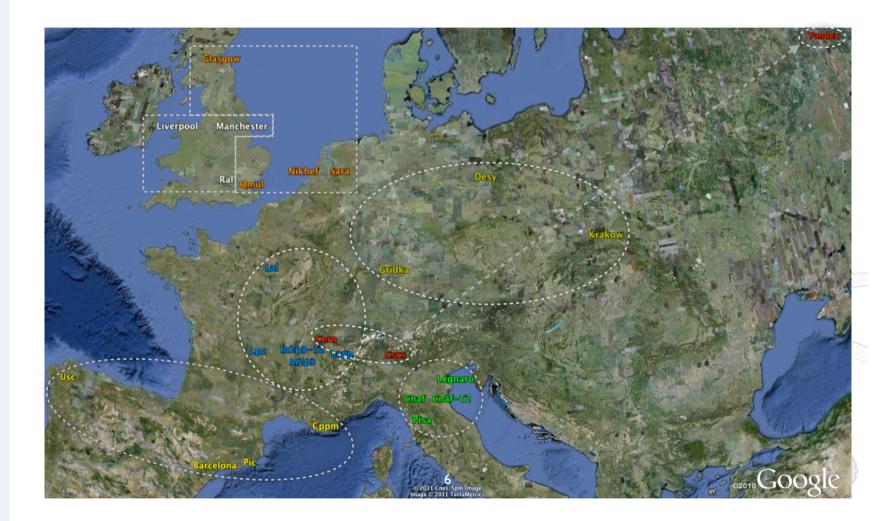
o "Swimming" selection

- Special type of analysis job, with very large CPU requirement (several seconds per event)
 - * Similar to reconstruction but with stripped DST as input
 - * One file per job

- Using files download from a well connected Tier1
- Selected number of Tier2s
- Better control than Analysis
 - All handled by the Production team, better organised, less chaotic
- Used for end-of-year reprocessing
- Group productions at Tier2s:
 - Possible option for CPU intensive "swimming" productions
 - ☆ But do we need it?
 - Keep things simple: use Tier2 only if Tier1 are saturated
 - Tier1 turn-around very good (all user jobs finished overnight)

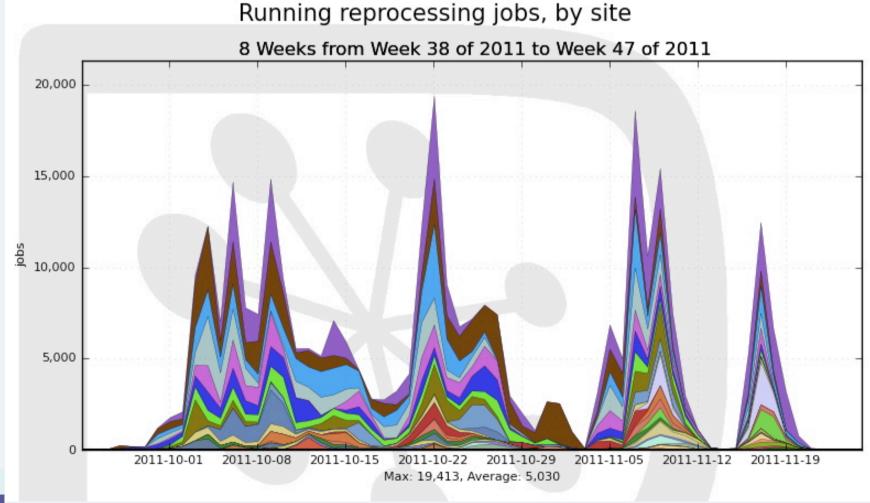
2011 end of year reprocessing

- Goal: reprocess all 2011 data as fast as possible, to have full dataset available for winter conference analyses
 - Had to start before end of data-taking
 - * Had to run in parallel with first pass reconstruction
 - Insufficient CPU resources at CERN+Tier1s


• New model:

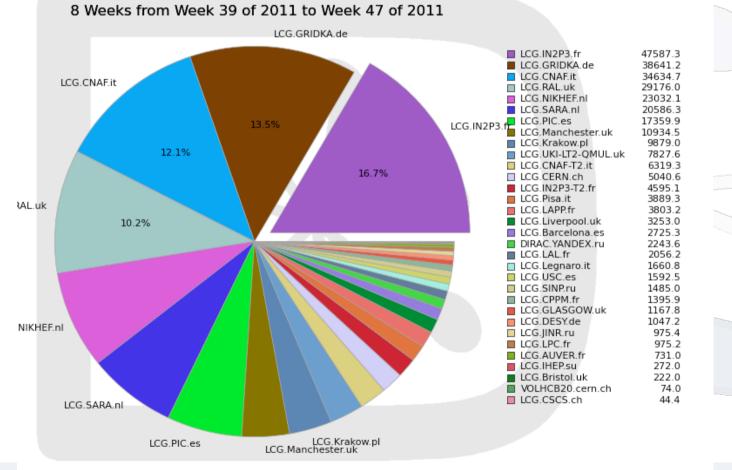
- Do all first pass reconstruction at CERN
 - Not a permanent change, only during October 2011 while still taking data
- Dedicate the Tier1's to reprocessing
- Do some of the reprocessing at selected Tier2s
 - Associate Tier2s to a "nearby" Tier1 site
 - Input data (RAW+SDST) downloaded to Tier2
 - Output uploaded to associated Tier1

2011 reprocessing: Tier1-Tier2 associations



 Reprocessing started end September, completed 20th November

• One month faster than forecast



2011 reprocessing, by site

- Biggest single contribution from CCIN2P3
- Total Tier2 contribution > 25%

But relatively small impact of French T2 sites

Running reprocessing jobs, by site

Forthcoming production plans

• MC11 simulation

- Huge production over several months, starting now
 - ☆ 2 billion events, ~one minute per event
 - A Need to go as fast as possible for winter conference analysis
- "Swimming" production on 2011 data
 - Several seconds per event, low I/O. Starting soon
- Re-stripping of 2011 data
 - Requires restaging of all 2011 RAW+SDST. In February
 - * Will run at Tier1's hosting the SDST
 - Requires replication to CERN of its share of SDST
 - * Replication from Tape not tried before
- Prompt reconstruction of 2012 data
 - Starting March, higher data rate than in 2011
 - A Larger events (higher pileup), maybe higher HLT rate
- Reprocessing of all 2012 (+2011) data
 - Starting in September

