

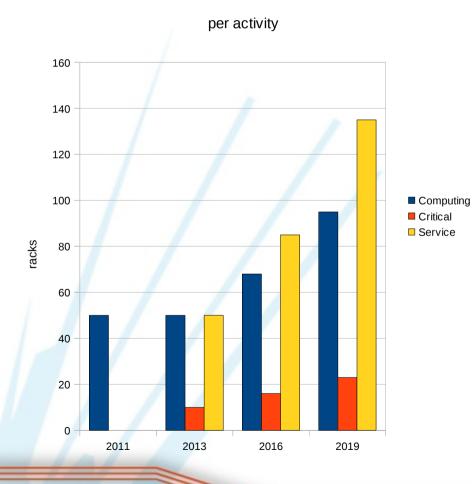
CC-IN2P3 new computing room

CC-IN2P3/CNRS Xavier Canehan

- 3 floors of 850 m²
- Already following upgrade planning

Previous room kept in production

- Delays at start (land procurement)
- Call for tender for a joint operation: conception & building
- Building process at good pace
- First phase hosting computing nodes
 - Return of 5 racks hosted at CINES
 - Internal migration of 16 racks
 - New production hardware
 - In production on the 24th of May



- Scalability → 2019
- Modularity from building to rack
- Reliability with multi-tiering infrastructure
- Energy efficiency for cooling and IT
- Cost efficiency: using public resources at the best
- Monitoring cooling unit, PDU, PUE
- On a « green » campus

Number of racks in Villeurbanne2

Hot aisle confined systems
2019: 6 blocks * 40 IT racks

240 racks

- Data treatment at first
 - \rightarrow minimum redundancy
- Critical services after power upgrade

1/3rd of UPS floor space equipped

- New building hosts all power line arrivals
 - 3 MW today, 6 MW in 2015, 9 MW in 2019
 - \rightarrow 6 MW for new building in 2019, 3.6 MW for IT
- No power generator but 2 HV distinct lines (2012) with reservation

1st phase: 1 UPS chain 2*500kVA, 15 min autonomy Failover without interruption to main power line (2MW)

Structure suited for heavy weight

23 m³ of chilled water

Combined chillers and silent heat exchangers (2 * 800 kW)

 \rightarrow 20 minutes delay in case of double chiller failure

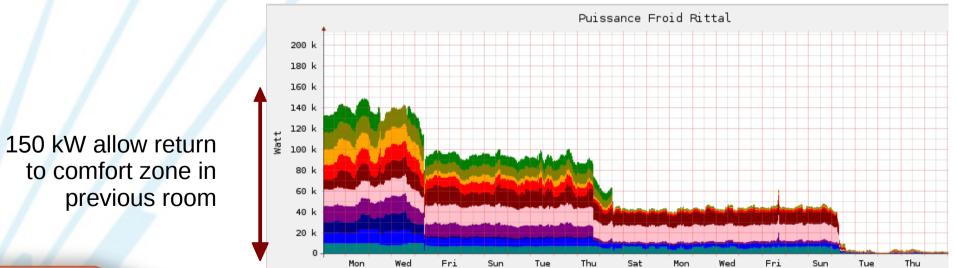
Computing room – cooling efficiency

- Cooling closer to heat production
 - Hot aisle confined system
 - 20 kW InRow cooling units
 - -1 unit for 1 IT rack
- Units working by group,
 ~280 kW last summer

compared to ~410 kW total power used

24 racks set up in April full production in May

- Chilled water pipes above racks
- Industrial power distribution
- 32A tri-phased PDU
 - → Cutting price on 40 sockets, new PDU design
- cooling and power ease of plugging



OGE migration minimized impact

- 9 racks of PowerEdge 1950 used for stress test
- On the 24th of May, after 2 day work (21 people)
 - 3 racks of PowerEdge 1950
 - 5 racks of PowerEdge M1000 chassis (M610 blades)
 - 2 racks of PowerEdge C6100, and installed 3 new racks
 - \rightarrow **7.5 tons** of hardware moved to new room

Every equipment is meant to be monitored, from Cooling Units and PDU to heavy infrastructure

 → beside server through IPMI and Service Processors

 Monitoring is not enough: need remote control

 → ambitious project of central technical gestion WIP

Current PUE is 1.47

– tuned during higher temperatures investigation (from 18°C to 23°C)

– Previous room PUE around 1.7

Providing Hot Water to nearby buildings : 70m³/h at 55°C

Allows better ERE, if not lower PUE

End of first phase: 2012 Q1

- + 1 * 1600 kVA transformer WIP
- + 1 * 600 kW chiller WIP
- + 1 * UPS chain of 2 * 500 kVA WIP
- + pipes and power lines for 40 more racks WIP
- Cabinets procurement as part of infrastructure
- Building Management System WIP
- hungry infrastructure planned
 - beside standard computing, **cloudification** of compute farm

Questions ?

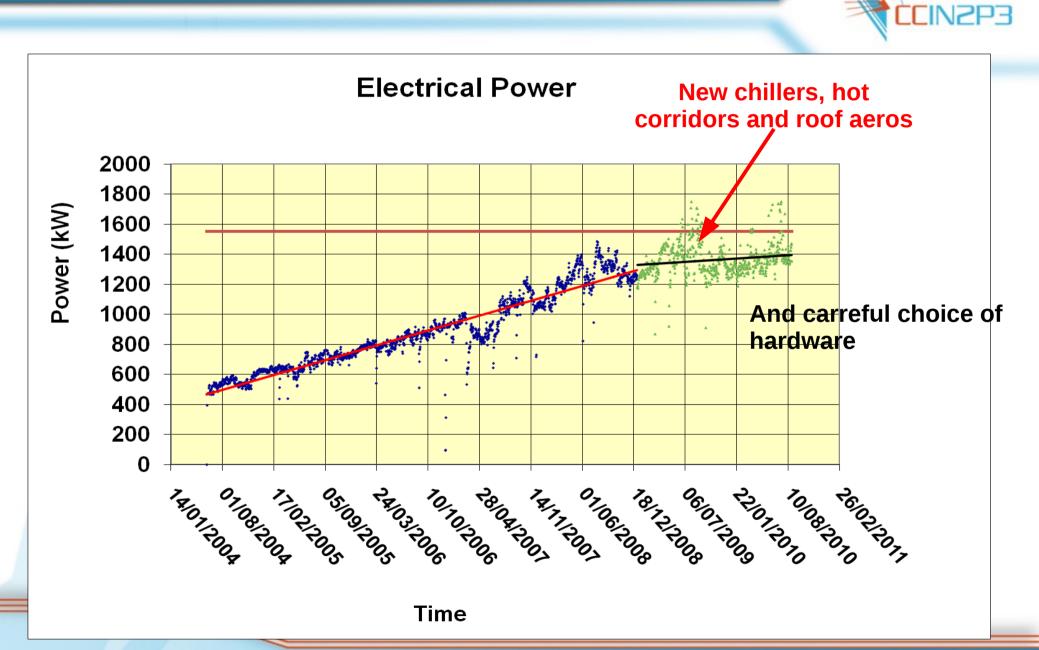
Xavier Canehan

2011/11/24 14

Several slides and figures by courtesy of

Dominique Boutigny, Director of CC-IN2P3 Pascal Trouvé

Right hand wall meant to protect computing units during extension, then moved to next pillar



800m² used for a mainframe in 1986

- Distributed computing since early 90's
 - \rightarrow Power, cooling and organization issues
- Despite lots of improvement of our infrastructure power distribution, UPS, power generator, chilled water distribution, cooling units, 5 brands of containment systems

we were so thigh that any modification was a nigthmare

Several more chillers planned

