International Cosmic Ray Conference Highlights

Beijing, 11-18 August 2011 Colas Rivière

Cosmic rays context

Simple (broken) power law
Up to ~knee: SNR
After: extragalactic

Closer look:
SNR? How?
Composition?
Sources?
Extra-galactic?
How?

ohua/www.twanight.org, www.ast.leeds.ac.uk/~fs/showerimages.htm

Direct measurement of CRs

New features Challenging interpretation

Pamela individual spectra

PAMELA p & He

2006-2008

Xiaohua/www.twanight.org, www.ast.leeds.ac.uk/~fs/showerimages.htn

Deviations from power law: a) R>240 GV

ohua/www.twanlght.org_www.ast.leeds.ac.uk/~fs/showerimages.htm

Deviations from power law: a) R<240 GV?

ohua/www.twanight.org_www.ast.leeds.ac.uk/~fs/showerimages.html

Positron fraction update

ohua/www.twar

270° longitude

events arriving from East: e⁻ allowed, e⁺ blocked

Modelization (eg. GALPROP)

P and He spectra in different scenarios

 All scenarios are tuned to the data, except the Reference scenario

Scenarios L and H: the local source component is calculated by the subtraction of the propagated Galactic spectrum from the data

The local source is assumed to be close to us, so no propagation; only primary CR species

Observation	Scenario R/S	Scenario P	Scenario I (a)	Scenario I (b)	Scenario L	Scenario H
The break (hard- ening of p and He spectra at $\rho_{\rm br}$), Figure 3	No	Yes, due to a break in the diffusion coefficient	Yes, due to a break in the injection spectrum	Yes, due to the as- sumption of a com- posite source	Yes, due to the as- sumption of a local low energy source	Yes, due to the as- sumption of a local high energy source
The 'dip' (soften- ing of CR spectra at $\rho < \rho_{\rm br}$), Figure 3	No	No, unless the dif- fusion coefficient has a correspond- ing 'dip'	No	No, but the 'dip' can be explained by assuming that the low-energy Galactic source turns over below $\rho_{\rm br}$.	Yes	No
Difference between p and He spectra, see Figures 3 and 4	Yes, if parameters are tuned to in- crease grammage and cross sections, as in <i>Scenario S</i> .	Yes, phe- nomenologically introduced	Yes, phe- nomenologically introduced	Yes, phe- nomenologically introduced	Yes, phe- nomenologically introduced	Yes, phe- nomenologically introduced
Continuity of p /He ratio at $\rho_{\rm br}$, Figure 4	Yes, but does not match the value of <i>p</i> /He ratio	Yes, no additional assumptions	Yes, no additional assumptions	Yes, but only if the different source classes inject with the same p /He ratio at $\rho_{\rm br}$	Yes, but only if the local and Galactic sources classes inject with the same p /He ratio at $\rho_{\rm br}$	Yes, but only if the local and Galactic sources classes inject with the same p /He ratio at $\rho_{\rm br}$
CR anisotropy due to diffusive escape of CRs above 1 TeV, Figure 6	Overpredicts	Overpredicts, but less than other scenarios	Overpredicts	Overpredicts, but the possibility of different spatial distributions of the two source classes must be considered	Overpredicts	Overpredicts; the local source, if it extends above 1 TeV, may affect anisotropy
B/C ratio above 1 GeV/nuc, Fig- ure 7	Yes	Yes, but differs from other sce- narios above $\rho_{\rm br}$; possible discrimi- nation with more accurate data	Yes	Yes	Yes, by construction	Yes
p flux (PAMELA), Figure 8	Yes, above a few GeV	Yes, but differs from other scenar- ios above $\rho_{\rm br}$	Yes, above a few GeV	Yes, above a few GeV	No	Yes, above a few GeV
γ-ray observations of <i>Fermi</i> -LAT, Fig- ure 10	Yes	Yes	Yes	Yes	∞ #1201 -	_{Yes} Moskalenko

Conclusions

- "Seem to be entering the era where the measurements force us to abandon our simple first-order ideas about acceleration and/or propagation"
 - "Smooth featureless power-laws" no-more?
- Multiple lines of evidence now point to:
 - Different spectral indices for p & He
 - Hardening of spectra above ~200 GV, for p & He
 - Possibly even more complexity (dips?)
 - Possibly this is also happening for heavy elements
- Lots of theoretical work to try to explain...

Conclusions II

- Existing electron spectrum confirmed
 - New Fermi Data
 - PAMELA measurement
 - MAGIC above E ~ 200 GeV
 - Challenge to simplest source/diffusion models
 - New sources? Pulsars? Dark Matter? Conventional Physics?
- Positron fraction confirmed/extended
 - "Excess" beyond ~10 GeV not going away
 - PAMELA reanalysis confirms, pegs lower limit at ~10% beyond 100 GeV
 - Clever analysis from Fermi/LAT in the same ballpark

Cosmic rays anisotropies

Large scale anisotropy

B. D'Ettorre Piazzoli

Xiaohua/www.twanight.org, www.ast.leeds.ac.uk/~fs/showerimages.htm

Large scale CR anisotropy vs energy

B. D'Ettorre Piazzoli

Xiaohua/www.twanight.org, www.ast.leeds.ac.uk/~fs/showerimages.htm

Large Scale Anisotropy and Past Results

•IceCube observed a large scale anisotropy at 10⁻³ level for the first time in the Southern Sky.

•Large Scale Features appear to be a continuation of those observed in the Northern Hemisphere.

Anisotropies

 Several experiments converging: ARGO-YBJ, EAS-TOP, IceCube, Milagro, TIBET Asy

R. Abbasi et al. ICRC-0305 & 0308

• The origin of the anisotropy is unknown:

- The result is not consistent with the CG assuming the galactic cosmic rays at rest with the galactic center.
- Improved theoretical description of the diffusion processes of galactic cosmic rays closer to the knee.
- Interstellar Magnetic field.
- This anisotropy reveals a new feature of the Galactic cosmic ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.

HE CRs

Auger accumulating statistics **Telescope Array up and running** 20% scaling factor in energy different conclusions joint analysis needed Benefits from LHC (QGSJetII.4) Cross section measurement: σ_n

Comparison of Spectra

energy scale difference of \sim 20%?

Longitudinal EAS Development with Auger FD

average depth

fluctuations

Longitudinal EAS Development with TA Stereo FD

UHE Correlation with AGNs within GZK-sphere?

VCV catalogue, E> 57 EeV, z<0.018, distance < 3.1 deg.

Auger

TA

updated (!) Auger

UHERs from CenA?

13/62 within 18 deg., expect 3.2 limits on source composition?

E.M. Santos [Auger Coll.], icrc868

... or Virgo?

iaohua/www.twanight.org, www.ast.leeds.ac.uk/~fs/showerimages.htm

Xiaohua/www.twanight.org_www.ast.leeds.ac.uk/~fs/showerimages.h

Radio detection

Independent deeper analysis done at UCLA

Stephen Hoover UCLA

- Still no neutrino candidates
- BUT: all of original 6 Hpol events, +10 more
- Hpol events: impulsive, broadband, coherent, not like anthropogenic signals
 - Spread out randomly over the flight path coverage, not clustered with any camps

Gammas

Source lists increasing Sensitivity improving Joint efforts ongoing The case of the Crab

The Crab

Pulsar

- In late 2009, we were reasonably confident that we understand the Crab rather well.
- Nebula: Synchrotron + IC emission. e⁻ up to PeV, accelerated at termination shock. Pulsed emission: curvature radiation in outer gap of neutron star

The case of the Crab

Flux *30, April 2011, hour timescale Standard diffusive shock acceleration not possible => See lecture next week

Hadronic candidates?

- It seems that the lepton-dominated case is favored, given the Fermi-LAT measurement and the low ambient gas density.
- F. Aharonian: "Life might be more complicated"

Aharonian

Stefan Funk, August 18th 2011, 32nd ICRC Beijing

Hadronic candidates?

Life might get even more complicated

 W 51C. One of the best cases for hadronic acceleration in the Fermi-LAT data (mid-aged remnant, interacting with dense molecular material)

Stefan Funk, August 18th 2011, 32nd ICRC Beijing

Hadronic candidates?

Life might get even more complicated

 W 51C. One of the best cases for hadronic acceleration in the Fermi-LAT data (mid-aged remnant, interacting with dense molecular material)

Stefan Funk, August 18th 2011, 32nd ICRC Beijing

Neutrino telescopes

Point source and different physics searches performed IceCube extending to more complete CR observatory (deep core, ice top, ARA) Other physics search performed: Dark matter, magnetic monopoles, nucleorites, ...

Searching for point sources of high-energy cosmic neutrinos with the ANTARES telescope

51 candidate sources

name	ra	decl	Nsigfit	Q	p-value	nsigma	lim_Nsig	lim_flux
HESS J1023-575	155.83	-57.76	1.97	2.35	0.41	0.82	5.62	6.6e-08
3C 279	-165.95	-5.79	1.11	2.15	0.48	0.71	5.35	1.0e-07
GX 339-4	-104.30	-48.79	1.26	1.49	0.72	0.36	5.10	5.8e-08
Cir X-1	-129.83	-57.17	1.52	1.31	0.79	0.27	5.00	5.8e-08
MODO 11000 . 00	=0.04	0.07	0.00	1.00	0.00	0.00	1 20	4 4 0.

#295

Bogazzi

Point-source search: All sky and Selected Sources

PKS 1454-354

22

Conclusion

First order description not sufficient anymore Injection and propagation models investigated Hadronic sources still mysterious At highest energies, correlation with AGN ~1/3, debate on composition

Did not speak about incoming experiments (AMS-2, HAWK, CTA, ...)