B physics results from 2011 summer conferences

Justine Serrano - CPPM

(Bias) choice of topic:

•Rare decays:
$$B_s \rightarrow \mu^+ \mu^-$$
, $B \rightarrow K^* \mu^+ \mu^-$

•CPV & B_s mixing:
$$B_s \rightarrow J/\psi \phi$$

•Radiative:
$$B_s \rightarrow \phi \gamma$$
 and $B_d \rightarrow K^* \gamma$

- •Hadronic : $B_{(s)} \rightarrow D_{(s)}K$
- •Semileptonic: B →D(*)τυ

séminaire CPPM

24 octobre 2011

Where to find beauty ?

	L(fb ⁻¹)	$\sigma_{acc}~(\mu b)$	bb produced/10 ⁹
ATLAS/CMS ⁽¹⁾	2.5	75	190
LHCb ⁽²⁾	0.7	75	52
CDF/D0 ⁽³⁾	9.5	2.8	26
Belle+BaBar	832+426	0.0011	1.4

Small but clean!

2

Rare decay: $B_{s/d} \rightarrow \mu^+ \mu^-$

- FCNC and helicity suppressed decays
- Precise SM prediction:
 - BR(B_s $\rightarrow \mu^{+}\mu^{-}$)= (3.2±0.2) x10⁻⁹
 - BR(B_d $\rightarrow \mu^{+}\mu^{-}$)= (1.1±0.1) x10⁻¹⁰
- BR very sensitive to new physics

$$\mathrm{Br}_{\mathrm{MSSM}}(B_q \to \ell^+ \ell^-) \propto rac{M_b^2 M_\ell^2 \mathrm{tan}^6 \, eta}{M_A^4}$$

- Analysis done at hadronic collider (Tevatron and LHC)
- Cut based or more sophisticated multi variate approach
- Blind analysis
- Statistics is crucial!

New result from CDF (7fb⁻¹)

arXiv:1107.2304v2

p-value background + SM Br: 1.9%

Br_{CDF} (B_s→µµ) = 1.8^{+1.1}_{-0.9} x 10⁻⁸ BR(B_d→µ⁺µ⁻) < 6.0 x10⁻⁹ @95%CL

First result from CMS (1.14 fb⁻¹)

- Cut based analysis
- Optimized on MC, cross check on data
- Effect of pile up has been carefully studied

CMS-PBH-11-002

		Barrel	Endcap
this is	$N_{\rm signal}^{\rm exp}$	0.80 ± 0.16	0.36 ± 0.07
B→hh	$N_{\rm bg}^{\rm exp}$	0.60 ± 0.35	0.80 ± 0.40
	$^{lpha}N_{ m peak}^{ m exp}$	0.07 ± 0.02	0.04 ± 0.01
	$N_{ m obs}$	2	1

BR(B_s $\rightarrow \mu^{+}\mu^{-}$)<1.9 x10⁻⁸ @95% CL BR(B_d $\rightarrow \mu^{+}\mu^{-}$)<4.6 x10⁻⁹ @95% CL

LHCb (300pb⁻¹)

Probability

10

- Use a boosted decision tree combining 9 geometrical and kinematical variables
- Extensive use of data to calibrate the PDF

BR(B_s→ $\mu^{+}\mu^{-}$) < 1.3 x10⁻⁸ (1.6 x10⁻⁸) @ 90 (95)% CL BR(B_d→ $\mu^{+}\mu^{-}$) < 4.2 x10⁻⁹ (5.1 x10⁻⁹) @ 90 (95)% CL Signal

O Background

LHCb+CMS

$B{\rightarrow}K^*\mu\mu$

$B \rightarrow K^* \mu \mu$: B factories and tevatron

arxiv:1108.0695

B→K*µµ: LHCb

CP violation: $B_s \rightarrow J/\psi \phi$

 B_s

φ.

Interference between mixing and decay gives rise to CP violating phase $\phi_s = \phi_M - 2 \phi_D$

$$\phi_s \stackrel{\text{sm}}{=} -2\beta_s \equiv -2\arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) = -0.0363 \pm 0.0016 \text{ rad}$$

Complex analyses :

- time dependent
- Flavour tagging
- full angular analysis for $J/\psi \phi$ (B->VV decay)
- should measure at the same time Γ_{s} and Φ_{s}

 ϕ_D

Ϳ/ψφ,

$B_s \rightarrow J/\psi \phi$: results

$B_s \rightarrow \phi \gamma \text{ and } B_d \rightarrow K^* \gamma$

Previously (Belle, Babar, CLEO):

$$\frac{\mathcal{B}(B^0 \to K^{*0}\gamma)}{\mathcal{B}(B^0_s \to \phi\gamma)} = 0.7 \pm 0.3$$

LHCb result:

$$\frac{\mathcal{B}(B^0 \to K^{*0} \gamma)}{\mathcal{B}(B^0_s \to \phi \gamma)} = 1.52 \pm 0.15 \text{(stat)} \pm 0.10 \text{(syst)} \pm 0.12 (f_s/f_d)$$

SCET predicts 1.0 ± 0.2 for this ratio [Ali et al., EPJ C55:577 (2008)]

Next : measure CP asymmetries

Measurement of the UT angle y

Same final state, 3 techniques :

• GLW (Gronau, London, Wyler) : use a CP mode for the D⁰ decay Physics Letters B 265(1-2), 172 – 176

• ADS (Atwood, Dunietz, Soni) : use D⁰ CA(K⁻ π^+) mode for the V_{ub} decay and D⁰ DCS(K⁺ π^-) for the V_{cb} decay *Phys. Rev. Lett.* 78(17), 3257–3260

• Dalitz GGSZ (Giri, Grossman, Soffer, Zupan) : use the $D^0 \rightarrow K_s \pi \pi$ or $K_s KK$ decays *Phys. Rev. D* 68(5), 054018.

γ from B \rightarrow DK, D \rightarrow K π (ADS)

γ from $B_s \rightarrow D_s K$

LHCb-CONF-2011-057

Time dependent analysis of the $B_s \rightarrow D_s K$ decays This summer : measure the BR (split by magnet polarity)

Very promising for future γ measurement

Search for charged Higgs in $B \rightarrow D(*)\tau \upsilon$

Ratio of τ to μ ,e could be reduced/enhanced significantly

$$R(D) \equiv \frac{\mathcal{B}(B \to D\tau\nu)}{\mathcal{B}(B \to D\ell\nu)}$$

Global CKM fit

Overall good consistency with the standard model

Some tensions between V_{ub} inclusive/exclusive, sin2 β , B $\rightarrow \tau \upsilon$

Conclusion

A lot of impressive results from

The open space for new physics is reducing!

Not covered: spectroscopy, charmless B decay, Vub, Vcb, α , β , anomalous dimuon charge asymmetry, LFV, ...

UTfit

Observable	Prediction	Measurement	Pull (σ)
γ [°]	69.6 ± 3.1	74 ± 11	-0.4
α [°]	85.4 ± 3.7	91.4 ± 6.1	-0.8
$\sin 2\beta$	0.771 ± 0.036	0.654 ± 0.026	+2.6
$ V_{ub} [10^{-3}]$	3.55 ± 0.14	3.76 ± 0.20	-0.9
$ V_{cb} [10^{-3}]$	42.69 ± 0.99	40.83 ± 0.45	+1.6
$\varepsilon_{K} [10^{-3}]$	1.92 ± 0.18	2.23 ± 0.010	-1.7
$BR(B \to \tau \nu) [10^{-4}]$	0.805 ± 0.071	1.72 ± 0.28	-3.2
$\Delta m_s [\mathrm{ps}^{-1}]$	17.77 ± 0.12	18.3 ± 1.3	-0.4
$\beta_s[^\circ]$	1.08 ± 0.04	Tevatron	1.9.1
$\Delta\Gamma_s [\mathrm{ps}^{-1}]$	0.11 ± 0.02	average	+2.1
$A_{\mu\mu} [10^{-4}]$	-1.7 ± 0.5	-95.7 ± 29.0	+3.2

Méthode d'analyse

- Calibration des fonctions de vraisemblance en utilisant les données
 - Bruit de fond: sidebands
 - Signal: échantillons de contrôle

Normalisation à un canal connu pour obtenir le rapport d'embranchement

$$\begin{split} \mathrm{BR} &= \mathrm{BR}_{\mathrm{cal}} \times \underbrace{\frac{\epsilon_{\mathrm{cal}}^{\mathrm{REC}} \epsilon_{\mathrm{cal}}^{\mathrm{SEL}|\mathrm{REC}} \epsilon_{\mathrm{cal}}^{\mathrm{TRIG}|\mathrm{SEL}} {\epsilon_{\mathrm{cal}}^{\mathrm{cal}} \epsilon_{\mathrm{cal}}^{\mathrm{cal}} | \times \frac{f_{\mathrm{cal}}}{f_{B_q^0}} \times \frac{N_{B_q^0 \to \mu^+ \mu^-}}{N_{\mathrm{cal}}} = \alpha_{\mathrm{cal}} \times N_{B_q^0 \to \mu^+ \mu^-} \\ & \\ \mathrm{Evalu\acute{s} avec le MC,} \\ \mathrm{crosscheck sur les} \\ \mathrm{donn\acute{e}s} & \\ \frac{1}{\sqrt{\psi} \to \mu^+ \mu^-} \end{aligned} \\ \end{split}$$

- Résultats:
 - Calcul de la limite en utilisant la méthode frequentiste modifiée CLs en bin the masse invariante et de MVA

Interprétation

Avec 1.14 fb⁻¹, CMS obtient: BR(B_s $\rightarrow \mu^+\mu^-$) < 1.9 x10⁻⁸ @ 95% CL BR(B_d $\rightarrow \mu^+\mu^-$) < 4.6 x10⁻⁹ @ 95% CL

Exemple de contraintes dans le cadre du CMSSM (*F.Mahmoudi et al, arXiv:1108.3018*):

Background expectation I

- Combinatorial background expectation extracted from a fit to the mass sidebands in bins of BDT
- Systematics evaluated using different fit functions and ranges

B_s region

	BDT<0.25	0.25 <bdt<0.5< th=""><th>0.5<bdt<0.75< th=""><th>0.75<bdt< th=""></bdt<></th></bdt<0.75<></th></bdt<0.5<>	0.5 <bdt<0.75< th=""><th>0.75<bdt< th=""></bdt<></th></bdt<0.75<>	0.75 <bdt< th=""></bdt<>
Exp.combinatorial	2968 ± 69	25 ± 2.5	2.99 ± 0.89	0.66 ± 0.40
Exp. SM signal	1.26 ± 0.13	0.61 ± 0.06	0.67 ± 0.07	0.72 ± 0.07
Observed	2872	26	3	2

misID background : 0.01±0.011 per bin

B_d region

	BDT<0.25	0.25 <bdt<0.5< th=""><th>0.5<bdt<0.75< th=""><th>0.75<bdt< th=""></bdt<></th></bdt<0.75<></th></bdt<0.5<>	0.5 <bdt<0.75< th=""><th>0.75<bdt< th=""></bdt<></th></bdt<0.75<>	0.75 <bdt< th=""></bdt<>
Exp.combinatorial	3175 ± 72	26.6 ± 2.5	3.1 ± 0.8	0.7 ± 0.4
Exp. MisID	0.6± 0.1	0.6± 0.1	0.6± 0.1	0.6± 0.1
Observed	3025	31	5	4

B_(s) mixing : search for NP

• DØ: Evidence for anomalous dimuon charge asymmetry, (6 fb⁻¹,PRL 105, 081801 (2010)) 3.2 σ deviation from $A_{sl}^b(SM) = (-0.023^{+0.005}_{-0.006})\%$ Update

- Increased statistics: 6.1 fb⁻¹→ 9.0 fb⁻¹
- Improved muon selection (higher efficiency, lower background from $\begin{array}{c} K \to \mu \\ \pi \to \mu \end{array}$)
- Improved analysis technique
- From b's? Study dependence of asymmetry on muon impact parameter

$$A^{\text{raw}} = \frac{N(\mu^+\mu^+) - N(\mu^-\mu^-)}{N(\mu^+\mu^+) + N(\mu^-\mu^-)} \xrightarrow{\text{Constrain backg.}}_{\text{Reduce syst.}} a^{\text{raw}} = \frac{n(\mu^+) - n(\mu^-)}{n(\mu^+) + n(\mu^-)} \xrightarrow{\text{Inclusive single}}_{\text{muons}} 15$$

DØ Update 9.0 fb⁻¹ arXiv:1106.6308, sub. to PRD
$$A^b_{sl} = (-0.787 \pm 0.172 \pm 0.093)\%$$
Now a 3.9 σ deviation from SM prediction
Central value closer to zero, still consistent with 6 fb⁻¹ result

Non-CP violating charge asymmetry

measured directly in data