		Summary 00

Eric Conte (GRPHE / Université de Haute-Alsace) in collaboration with B. Fuks & G. Serret

FeynRules 2012 workshop @ Mont Sainte-Odile March 26-30, 2012

Introduction	My first analysis 0000000000	Advanced functionalities	Developer-friendly mode	Summary 00
Outline				

- 2 Writing my first analysis
- 3 Advanced functionalities
- A first look at the developer-friendly mode
- 5 Summary and outlook

Introduction	My first analysis	Advanced functionalities	Developer-friendly mode	Summary 00
MadAnal	ysis overviev	V		

Scope

- Analysis of event files produced by Monte Carlo tools at parton level, hadron level or after detector simulation.
- Definition of various selection cuts on the input samples.
- Production of histograms for different distributions.
- Results of the analysis summed up by a S/B-like ratio table.

Computing details

- Interface written in Python and ROOT ; kernel in C++.
- Possible output in ROOT, HTML, LATEX.

Website

- https://server06.fynu.ucl.ac.be/projects/madanalysis
- Please send us your comments and suggestions (tickets on the wiki).

Introduction	My first analysis 0000000000	Advanced functionalities	Developer-friendly mode	Summary 00
Download	d and install	ation		

A tarball of the program source will be available on the website.

Two installation procedures are possible : untaring the tarball

- inside MadGraph 5 directory (MG5 settings will be used).
- in an independent directory (stand alone running).

MadAnalysis depends essentially on 3 programs which must be present on the system (libraries & headers) :

- Python version \geq 2.6 but not 3.X.
- Boost C++ libraries.
- Root release \geq 5.27.

If the dependencies are installed in a local directory, please set the variables \$CPLUS_INCLUDE_PATH and \$LD_LIBRARY_PATH.

Advanced functionalities Developer-friendly mode Introduction Mv first analysis Summary 0000000 First session of MadAnalysis bin/ma5 Checking ROOT libraries ... Loading ROOT libraries ... Checking g++ libraries Checking Boost libraries ... Checking RPC/XDR libraries ... Checking MadAnalysis library ... First use of MadAnalysis detected (or the library is missing) Creating (or overwriting) folder 'lib' ... Copying 'SampleAnalyzer' source files... Creating a 'Makefile'... Compiling the MadAnalysis library... Linking the MadAnalysis library... Checking the MadAnalysis library presence... * WELCOME to MADANALYSIS 5 * * * * * * * * * MA5 release : 0.5.74 2012/03/22 * * * * The MadAnalysis Development Team - Please visit us at * https://server06.fynu.ucl.ac.be/projects/madanalysis * *

Introduction	My first analysis Advanced functionalities Developer-friendly mode		My first analysis Advanced functionalities Developer-friendly m	Advanced functionalities	Developer-friendly mode	ode Summary
0000000						
F • • •	·	1				

Firct	session	of	Λ /	lad.	Ι	\n_	VCIC
IIISL	26221011		IV	lau	Γ	Πа	iysis

*	*				
* WELCOME to MADANALYSIS 5	*				
*	*				
*	*				
* /'_/'\/ \/	*				
* // //////////////////////////////////	*				
*	*				
*	*				
*	*				
* \/_/ \/_/\/_/\/_/	*				
*	*				
* MA5 release : 0.5.74 2012/03/22	*				
*	*				
* The MadAnalysis Development Team - Please visit us at	*				
* https://server06.fynu.ucl.ac.be/projects/madanalysis	*				
*	*				
* Type 'help' for in-line help.	*				
*	*				
*****	***				
MadGraph 5 NOT found => default particle names from the fit	le:				
/home/econte/madanalysis/input/particles_name_default.tx	t				
84 particles have been successfully exported.					
MadGraph 5 NOT found => default multiparticle definitions :	from the file:				
/home/econte//madanalysis/input/multiparticles_default.txt					
Creation of a multiparticle labelled by 'invisible' (related	ed to missing energy).				
Creation of a multiparticle labelled by 'hadronic' (relate	d to jet transverse energy).				
8 multiparticles have been successfully exported.					
ma5>					

Introduction	My first analysis 0000000000	Advanced functionalities	Developer-friendly mode	Summary 00
MadGrap	h-like interf	ace		

Mimic the design concepts of the user-friendly MadGraph interface

- inline help
- autocompletion with tabulation key
- history of the commands
- possibility to launch shell commands
- several actions in only one command line (actions separated by ;)
- allowing to have comments starting with #
- coloured logger with several levels of criticality.
- alternative to interactive interface : scripts

 Introduction
 My first analysis
 Advanced functionalities
 Developer-friendly mode
 Summary

 •••••••••••••
 •••••••••
 ••••••••
 •••••••
 ••••••
 ••••••

 Writing my first analysis with MadAnalysis
 ••••••
 •••••
 •••••
 ••••

Introduction	My first analysis ○●○○○○○○○	Advanced functionalities	Developer-friendly mode	Summary 00
Step 1 :	importing ev	vent files		

This proceeds through the command import :

- Supported format : LHE, STDHEP, HEPMC, LHCO (home-made readers). Gzip files are also supported.
- Wildcards are allowed \rightarrow several files can be imported at a time

Storage :

- Imported files are stored as datasets.
- Default set name : defaultset ; otherwise specified by the user.

```
ma5>import diboson* as diboson
ma5>import ttbar* as ttbar
```

Two types of datasets : signal and background

Aim : comparing signal and background distributions

ma5>set diboson.type = background
ma5>set ttbar.type = signal

Introduction 0000000	My first analysis ००●००००००	Advanced functionalities	Developer-friendly mode	Summary 00
Step 2 :	defining new	multiparticles		

MadAnalysis reuses the concept of *multiparticle* defined by MadGraph.

Display the list of particles and multiparticles :

```
ma5>display_particles
a b b~ c c~ d d~ e+ e- g h s s~ t t~ ta+ ta- u u~
ve ve~ vm vm~ vt vt~ w+ w- z
ma5>
ma5>display_multiparticles
hadronic invisible j l+ l- p vl vl~
```

Defining your own multiparticles :

• from other (multi)particles.

ma5>define mu = mu+ mu-

from PDG-id codes.

ma5>define mu = +13 -13

Note : 2 special labels : **invisible** (missing transverse energy) and **hadronic** (hadronic activity).

Introduction 0000000	My first analysis	Advanced functionalities	Developer-friendly mode	Summary 00		
Step 3 : defining a selection						

Plot :

The command plot allows to define the distributions to be investigated.

Syntax : plot <observable> nbin xmin xmax

ma5>plot MET 100 0 1000

Cut :

The command reject allows to reject events which satisfies a given condition. Syntax : reject <condition1> [and/or <condition2> and/or <condition3> ...]

ma5>reject MET < 20</pre>

The command accept is similar but keeps events which satisfy a given condition. ma5>accept MET > 20

List of observables implemented :

- total and missing transverse energy (TET and MET)
- total and missing transverse hadronic energy (THT and MHT)
- final particles present in the samples (NPID and NAPID)

Introduction 0000000	My first analysis ००००●०००००	Advanced functionalities	Developer-friendly mode	Summary 00
Step 3 :	defining a se	election		

plot, accept and reject can be applied on a (multi)particle. The syntax is quite different :

```
plot <observable> ( <particle> ) nbins xmin xmax
```

```
reject/accept ( <particle> ) <condition1> [and/or ...]
```

Examples :

ma5>plot PT (mu+) 100 0 100
ma5>accept (mu+) PT > 20 and PT < 100</pre>

List of observables implemented :

- multiplicity (N),
- energy (E and ET),
- mass (M and MT),
- momentum magnitude and components (P, PT, PX, PY, PZ),
- angles (THETA, ETA and PHI),
- relativist factors (Y, BETA and GAMMA).

Introduction 0000000	My first analysis	Advanced functionalities	Developer-friendly mode 00000	Summary 00
Step 3 :	defining a se	election		

Moreover, analysists can find useful to plot (or apply a cut on) invariant mass of n-particles state. MadAnalysis does the job !

ma5>plot M (mu- mu+) 100 0 150

In this example, all combinations $\mu^+~\mu^-$ are performed and their mass fills the histogram.

To be the most generic as possible, commands plot, accept and reject can be applied to a combination of several particles. Particle momenta are summed vertorially before calculating the observable.

Note : MadAnalysis is very careful when it performs the different combinations. In particular, it avoids possible double-counting.

Introduction 0000000	My first analysis ○○○○○●○○○	Advanced functionalities	Developer-friendly mode 00000	Summary 00
Step 4 :	launching th	ie analysis		

The command submit allows to perform the selected analysis :

- reading of the Monte Carlo event files.
- updating the information associated to each dataset.
- creating a ROOT file with the analysis itself.
- syntax : submit <dirname>

Example :

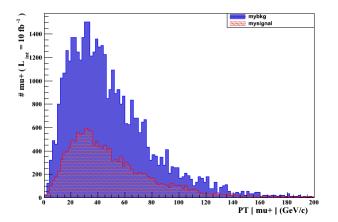
```
ma5>submit toto
  Creating folder '/home/econte/myAnalysis'...
  Copying 'SampleAnalyzer' source files...
  Inserting your selection into 'SampleAnalyzer'...
  Writing the list of datasets...
  Creating a 'Makefile'...
  Compiling 'SampleAnalyzer'...
  Linking 'SampleAnalyzer'...
  Running 'SampleAnalyzer' over dataset 'defaultset'...
   ******
   * SampleAnalyzer 1.5 for MadAnalysis 5 - Welcome.
   * Option choices: selecting analysis 'MadAnalysis5job'.
   A. Participation where for a provide a second of filling.
```

Introduction My first analysis		Advanced functionalities	Developer-friendly mode	Summary 00
Step 5 :	diplaying res	sults		

Information related to datasets

Displaying a dataset via MadAnalysis interface gives information about Monte Carlo samples.

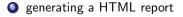
Generating a report


All the selection results can be gathered in a report. MadAnalysis supplies 3 commands corresponding to the format of the report :

- generate_latex : produce a report compilable by latex
- generate_pdflatex : produce a report compilable by pdflatex
- generate_html : produce a report in HTML format

		000000	00000	00					
Step 5 : diplaying results									

Dataset	# events	Mean	<u>RMS</u>	% Underflow	<mark>% Overflow</mark>
mybkg	42751	48.9768	31.5	0.0	0.4688
mysignal	15939	49.4274	31.7	0.0	0.5338


Histogram number 1 - Statistics

Introduction 0000000	My first analysis ०००००००००	Advanced functionalities	Developer-friendly mode	Summary 00
Interactiv	ve demo 1			

- opening a MadAnalysis session
- displaying (multi)particles and creating new ones
- importing samples and gathering them in datasets
- defining a selection including plots and cuts
- launching the selection on samples

Introduction	My first analysis	Advanced functionalities	Developer-friendly mode	Summary
0000000	0000000000	●०००००		00
	1.0	1		

Advanced functionnalities

IntroductionMy first analysis0000000000000000		Advanced functionalities	Developer-friendly mode	Summary 00		
MadAnalysis 5 modes						

By default, MadAnalysis is configured for analyzing MC samples generated at *parton level*. Configuring the program in *hadron level* or *reconstructed level* mode requires to open a new session with the appropriate argument.

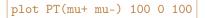
mode	argument for launching MadAnalysis	shortcut
parton level	bin/ma5 ——partonlevel	bin/ma5 -P
hadron level	bin/ma5 ——hadronlevel	bin/ma5 -H
reconstructed level	bin/ma5 ——recolevel	bin/ma5 -R

Main consequences :

- New observables are available in the case of reconstructed object :
 - ISOL : isolated lepton ?,
 - HE_EE : hadronic energy over electomagnetic energy
 - NTRACKS : number of tracks in a jet.
- The initial list of particles loaded at the session start differs.

Introduction 0000000	My first analysis 0000000000	Advanced functionalities	Developer-friendly mode	Summary 00
Import :	a multi-purp	oose command		

 $\tt import$ command has been designed to extract information from external files and to fill MadAnalysis objects with them. The syntax is $\,:\,$


import [file/directory]

The action carried out by this command depends on the type or the content of the input file/directory :

- importing Monte Carlo samples and gathering them into datasets.
- importing particles from UFO model. Stable, electrically and colored neutral are also included into 'invisible' multiparticle (except photon).
- restoring a MadAnalysis configuration from a submitted job. Available soon.

The command below creates an histogram related to the transverse momentum of the vectorial sum of the μ^- and the μ^+ momenta. This can be changed by adding a 'prefix' to the observable.

- vPT : PT of the vectorial sum of the muon momenta
- sPT : scalar sum of the muon PT
- vdPT or dvPT or dPT : PT of the vectorial difference of the muon momenta
- sdPT or dsPT : scalar difference of the muon PT
- rPT : ratio defined by the difference between $\mathsf{PT}(\mathsf{mu+})$ and $\mathsf{PT}(\mathsf{mu-})$ over $\mathsf{PT}(\mathsf{mu+})$

Squared brackets [] allow to select a particle according to its rank in PT.

plot PT(mu+[1]) 100 0 100 # leading muon plot PT(mu+[2]) 100 0 100 # next-to leading muon

The muons with the smallest PT can be selected by negative index.

plot PT(mu+[-1]) 100 0 100 # the muon with the smallest PT plot PT(mu+[-2]) 100 0 100

Ordering observables can be changed :

set selection[1].rank = ETordering

Introduction	My first analysis	Advanced functionalities	Developer-friendly mode	Summary
0000000	0000000000	○○○○○●		00
Mother-t	o-daughter r	relations		

Another way to select only one particle is to use the history of the particle. Two operators allows to do that : < and <<.

operator

allows to specify the identity of the mother

• operator <<

allows to specify one of the descendants of the particle

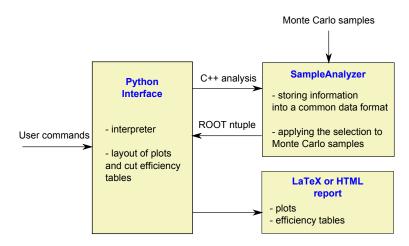
plot	PT(mu+	<<	t)	100	0	100	#	pos	sit	ive	muon coming
							#	fro	om	the	cascade-decay
							#	of	a	top	quark

Several mother-to-daughter operators could be combined. For instance,

plot PT(mu+ << t < st1) 100 0 100

Warning : this option is forbidden in reconstructed level mode.

Introduction 0000000	My first analysis	Advanced functionalities	Developer-friendly mode ●○○○○	Summary 00
D	C			


Developer-friendly mode

What is the developer-friendly mode?

Writing the code of your analysis inside the SampleAnalyzer kernel, without using the Python interface. \rightarrow C++ skills are required !

Introduction	My first analysis	Advanced functionalities	Developer-friendly mode	Summary
0000000	0000000000		००●००	00
Why a de	eveloper-frie	ndly mode?		

Several reasons could motivate the use of the expert mode :

- performing plots more sophisticated than 2D histograms.
- plotting (or cutting on) an observable which is not implemented in the program.

example : new physics research in $B^0_d \to K^{0*} \mu^+ \mu^-$. asymmetry between forward and backward moving μ^+ versus the B meson direction in the $\mu^+\mu^-$ rest frame.

$$\mathsf{B} \xrightarrow{\mu^{+}}_{\mu^{-}} \mathsf{K}^{0^{\star}} \overset{A_{FB}(s = m_{\mu^{+}\mu^{-}}^{2}) = \frac{N_{F} - N_{B}}{N_{F} + N_{B}}$$

• producing a result file in a specific format

• ..

Introduction	My first analysis	Advanced functionalities	Developer-friendly mode	Summary			
0000000	0000000000		०००●०	00			
Framework possibilities							

SampleAnalyzer can be seen as a genuine framework which has been designed in order to be efficient and very simple to be used.

Developer-friendly qualities of the framework :

- compilation and linking recipe is fully automated including ROOT libraries.
- event information is stored in a common data format whatever the input sample format.
- library of physics functions is available.
- several services facilitate the task of the developer (logger, exception handle, ...).
- doxygen documentation on the web site available soon.

Introduction 0000000	My first analysis	Advanced functionalities	Developer-friendly mode ○○○○●	Summary 00
Interest.				

Interactive demo 2

- access to Expert mode
- esting the environment
- editing the existing analysis
- implementing a new analysis
- Iaunching and selecting an analysis

Introduction 0000000	My first analysis 0000000000	Advanced functionalities	Developer-friendly mode	Summary ●○
Summary	/			

Main functionalities are implemented ... but some points must be finalized :

- Minor options such as restoring a MadAnalysis session with the command 'import'.
- Code validation : J. Andrea and master students test and use MadAnalysis for their private phenomenological investigations. A test suite will be soon available for checking the program in a exhaustive way
- A user's guide (50 pages already written)

Beta release

y

Be available, with the draft of the paper, for MadGraph and FeynRules collaboration : April, the 6^{th} (Easter day).

Public release

Planned for the end of April, including potential fixes resulting from the first feedback of the beta testers.

Introduction 0000000	My first analysis 0000000000	Advanced functionalities	Developer-friendly mode	Summary ○●
What to	expect for th	ne next public re	leases	

Current to-do list :

- Making MadAnalysis 5 independent from libraries BOOST and XDR.
- Automating the treatment for binning of histograms.
- Determining precisely the time budget of typical jobs and optimizing the algorithms.
- Interfacing MadAnalysis to MadGraph (collaboration work with Olivier).
- Matching (collaboration work with Rick).
- Analyzing on-flight events produced by Next-To-Leading order generator.
- Implementing jet clustering algorithms (FastJet) and basic detector simulation.