

STATUS AND PROSPECTS OF AMC@NLO

Rikkert Frederix University of Zurich

FeynRules 2012 workshop: towards NLO, Mont Sainte-Odile, France, March 25-30, 2012

LEADING ORDER

- ** For many of the theory predictions needed in the searches for new physics as well as measuring properties of the SM, treelevel matrix element generators (Alpgen, MadGraph/ MadEvent, Sherpa) plus multi-parton merging techniques (CKKW-L, MLM) are used
- The reasons for this are clear:
 - In many regions of phase-space they do a very good job, in particular for shapes of distributions
 - * Parton showers and hadronizations models are tuned to data
 - Many flexible lowest order (LO) tools are readily available and easy to use

WHY WE NEED NLO...

- Why even bother to go beyond LOwPS matching? Some typical motivations (by theorists) for (parton level) NLO are:
 - Better description of jet structure(2 partons instead of 1)
 - New channels opening up (e.g. qg vs gg initial states)
 - * "NLO" effects on distributions (e.g. kinematics dependent K-factor)
- * However, these are actually motivations to do tree-level partonshower matching. Genuine NLO effects are not an issue

WHY WE REALLY NEED NLO

- Genuine reasons to go to (N)NLO:
 - * Total rates are much better described
 - Reduced theoretical uncertainties due to meaningful scale dependence
 - Proper estimate of the PDF uncertainties
 - Description of pure higher order effects* (like ttbar Forward-Backward asymmetry)

*although, one might consider this to be LO

WHY WE NEED NLOWPS

- When can we better make use of NLOwPS predictions?
 - * Large backgrounds that are difficult to normalize to data
 - When multivariate techniques (e.g. Boosted decision trees, Neural Network) are essential
 - Over-stretching fixed-order results can give biases
 - It doesn't hurt using them (when they are easy and quick to run)
- So, in general, when precision is an issue and results dependent on theoretical input.

NLOwPS allows one to use NLO information in all aspects of an experimental analysis

WHY WE NEED NLOWPS

- Some prime examples are:
 - **b-tagging:** same as in experiment, for processes in which NLO results are desirable (e.g. Vector boson plus heavy flavor)
 - Behavior of extra jets (described by perturbative or nonperturbative physics). Typical example is jet-veto systematics
 - Description of genuine NLO effects. Typical example is topantitop forward-backward asymmetry

NLOWPS: IMPLEMENTATION

- The three difficulties of NLOwPS event generation
 - Wirtual amplitudes: how to compute the loops automatically in a reasonable amount of time
 - * How to deal with infra-red divergences and phase-space integration in an efficient way: virtual corrections and real-emission corrections are separately divergent and only their sum is finite (for IR-safe observables) according to the KLN theorem
 - We have to match these processes to a parton shower without double counting
- * All three implemented in the automatic aMC@NLO package!

VIRTUAL CORRECTIONS

- MadLoop [Hirschi, RF, Frixione, Garzelli, Maltoni, Pittau (2011)] uses the OPP method [Ossola, Papadopoulos & Pittau (2006)] as implemented in CutTools [Ossola, Papadopoulos & Pittau (2007)] to compute virtual contributions from tree-level diagrams
- Based on setting up a system of linear equations to find the coefficients in front of the basis of scalar integrals by sampling the integrand
- * Needs special treatment to get also the rational term
- Completely general (and numerical) method
- More in Valentin's presentation about current status and prospects for MadLoop in MadGraph 5

FACTORING IR POLES

- The MadFKS [RF., Frixione, Maltoni & Stelzer (2009)] code uses the FKS subtraction scheme [Frixione, Kunszt, Signer (1995)] to factor the soft and collinear poles out of the phase-space integrals and cancel them against the poles from the virtual corrections
- Based on splitting the phase-space integrals in regions in which there is (maximally) one collinear and one soft divergence
- # Allows for optimized numerical phase-space integration
- Parallel in nature: can make use of many CPUs simultaneously to speed-up the calculation
- Process independent & Model independent

MATCHING TO THE PARTON SHOWER

- * There is double counting between the real emission matrix elements and the parton shower: the extra radiation can come from the matrix elements or the parton shower
- There is also an overlap between the virtual corrections and the Sudakov suppression in the zero-emission probability

DOUBLE COUNTING IN VIRTUAL/SUDAKOV

- * The Sudakov factor Δ (which is responsible for the resummation of all the radiation in the shower) is the no-emission probability
- It's defined to be Δ = 1 − *P*, where P is the probability for a branching to occur
- * By using the conservation of probability in this way, Δ contains contributions from the virtual corrections implicitly
- * Because at NLO the virtual corrections are already included via explicit matrix elements, Δ is double counting with the virtual corrections
- In fact, because the shower is unitary, what we are double counting in the real emission corrections is exactly equal to what we are double counting in the virtual corrections (but with opposite sign)!

MC@NLO PROCEDURE

[Frixione & Webber (2002)] Parton shower Born+Virtual: Real emission: $\frac{d\sigma_{\rm MC@NLO}}{dO} = \left| d\Phi_m (B + \int_{\rm loop} V + \int d\Phi_1 MC) \right| \mathcal{F}_{\rm MC}^{(m)}$ $+ \left[d\Phi_{m+1}(R - MC) \right] \mathcal{F}_{\mathrm{MC}}^{(m+1)}$

Double counting is explicitly removed by including the "shower subtraction terms"

CURRENT STATUS OF MC SUBTRACTION

- The MC subtraction terms are Shower Monte Carlo specific: each partons shower needs different subtraction terms
- % Current status of aMC@NLO is
 - # aMC@NLO/Herwig6: working and fully tested
 - # aMC@NLO/Pythia6 (Q²-ordered): working and well-tested
 - aMC@NLO/Pythia6 (pr-ordered): initial state implemented, final state is work in progress. High priority
 - aMC@NLO/Pythia8: initial state implemented, final state is work in progress. High priority
 - aMC@NLO/Herwig++: all implemented but final state needs
 still validation. Lower priority

THE aMC@NLO CODE

MadGraph

THE aMC@NLO CODE

MadGraph

MadFKS

THE aMC@NLO CODE

MadGraph

MC@NLO

MadFKS

MadLoop (CutTools)

MC@NLO

http://amcatnlo.cern.ch

SCALE DEPENDENCE & PDF UNCERTAINTIES

SCALE DEPENDENCE AND PDF UNCERTAINTIES

- Any short-distance cross section can be written as a linear combination of scale and PDF dependent terms, with coefficients independent of both scales and PDFs.
- Therefore, saving these coefficients in the event file allows for a posterior evaluation of scale and PDF uncertainties, by evaluating their dependence eventby-event, without needing to rerun the generation of the events

Reweighting at LO

Straight-forward at LO

Factorization scale only enters PDFs

- * Renormalization scale only enters in alpha_s $f_a(\mu_F) \otimes f_b(\mu_F) \otimes \alpha_s(\mu_R)^b |\overline{M}|^2$
- ** So, we can simply reweight event-by-events with the factor $\mathcal{R}_{i} = \frac{f_{1}'(x_{1;i}, \mu_{F}')f_{2}'(x_{2;i}, \mu_{F}')g_{S}^{2b}(\mu_{R}')}{f_{1}(x_{1;i}, \mu_{F}')f_{2}'(x_{2;i}, \mu_{F}')g_{S}^{2b}(\mu_{R}')}$

$$f_1(x_{1;i},\mu_F)f_2(x_{2;i},\mu_F)g_S^{2b}(\mu_R)$$

to get the scale & PDF dependence

REWEIGHTING AT NLO

A bit more involved at NLO

Scales also enters the process explicitly

$$\mathcal{R}_{i}^{(\alpha)} = f_{1}^{\prime}(x_{1;i}^{(\alpha)}, \mu_{F}^{\prime(\alpha)}) f_{2}^{\prime}(x_{2;i}^{(\alpha)}, \mu_{F}^{\prime(\alpha)}) \left[g_{S}^{2b+2}(\mu_{R}^{\prime(\alpha)}) \left(\widehat{W}_{0}^{(\alpha)}(\mathcal{K}_{n+1;i}^{(\alpha)}) + \widehat{W}_{F}^{(\alpha)}(\mathcal{K}_{n+1;i}^{(\alpha)}) \log \frac{\mu_{F}^{\prime(\alpha)^{2}}}{Q^{2}} + \widehat{W}_{R}^{(\alpha)}(\mathcal{K}_{n+1;i}^{(\alpha)}) \log \frac{\mu_{R}^{\prime(\alpha)^{2}}}{Q^{2}} \right) \\
+ g_{S}^{2b}(\mu_{R}^{\prime(\alpha)}) \widehat{W}_{B}(\mathcal{K}_{n+1;i}^{(\alpha)}) \delta_{\alpha S} \left] \left/ \frac{d\sigma^{(\mathrm{NLO},\alpha)}}{d\mu_{Bj}d\mu_{n+1}} (\mathcal{K}_{n+1;i}^{(\alpha)}, x_{1;i}^{(\alpha)}, x_{2;i}^{(\alpha)}) \right. \tag{1.19}$$

In aMC@NLO it is even a bit more involved...

$\begin{array}{l} \mathbf{Reweighting} \\ \mathbf{R}_{i}^{(\mathbb{H})} = \left\{ f_{1}'(x_{1;i}^{(E)}, \mu_{F}^{\prime(E)}) f_{2}'(x_{2;i}^{(E)}, \mu_{F}^{\prime(E)}) g_{S}^{2b+2}(\mu_{R}^{\prime(E)}) \\ \times \left[\widehat{W}_{0}^{(E)}(\mathcal{E}_{\mathbb{H};i}) + \widehat{W}_{F}^{(E)}(\mathcal{E}_{\mathbb{H};i}) \log\left(\frac{\mu_{F}^{\prime(E)}}{Q}\right)^{2} + \widehat{W}_{R}^{(E)}(\mathcal{E}_{\mathbb{H};i}) \log\left(\frac{\mu_{R}^{\prime(E)}}{Q}\right)^{2} \right] \\ - \sum_{c} f_{1}'(x_{1;i}^{(\mathrm{MC},c)}, \mu_{F}^{\prime(E)}) f_{2}'(x_{2;i}^{(\mathrm{MC},c)}, \mu_{F}^{\prime(E)}) g_{S}^{2b+2}(\mu_{R}^{\prime(E)}) w^{(\mathrm{MC},c)} \right\} \\ - \left. \frac{d\sigma^{(\mathbb{H})}}{d\chi_{Bj}d\chi_{n+1}}(\mathcal{E}_{\mathbb{H};i}), \qquad (2.31) \end{array}$

$$\mathcal{R}_{i}^{(\mathbb{S})} = \left\{ \sum_{c} f_{1}'(x_{1;i}^{(\mathrm{MC},c)},\mu_{F}'^{(E)}) f_{2}'(x_{2;i}^{(\mathrm{MC},c)},\mu_{F}'^{(E)}) g_{S}^{2b+2}(\mu_{R}'^{(E)}) w^{(\mathrm{MC},c)} \right. \\ \left. + \sum_{\alpha=S,C,SC} f_{1}'(x_{1;i}^{(\alpha)},\mu_{F}'^{(S)}) f_{2}'(x_{2;i}^{(\alpha)},\mu_{F}'^{(S)}) \right[\\ \left. g_{S}^{2b+2}(\mu_{R}'^{(S)}) \left(\widehat{W}_{0}^{(\alpha)}(\mathcal{E}_{\mathbb{S};i}) + \widehat{W}_{F}^{(\alpha)}(\mathcal{E}_{\mathbb{S};i}) \log\left(\frac{\mu_{F}'^{(S)}}{Q}\right)^{2} + \widehat{W}_{R}^{(\alpha)}(\mathcal{E}_{\mathbb{S};i}) \log\left(\frac{\mu_{R}'^{(S)}}{Q}\right)^{2} \right) \\ \left. + g_{S}^{2b}(\mu_{R}'^{(S)}) \widehat{W}_{B}(\mathcal{E}_{\mathbb{S};i}) \delta_{\alpha S} \right] \right\} \left/ \frac{d\sigma^{(S)}}{d\chi_{Bj}d\chi_{n+1}}(\mathcal{E}_{\mathbb{S};i}) . \right.$$

$$(2.32)$$

More details can be found in [*RF, Frixione, Hirschi, Maltoni, Pittau, Torrielli, 1110.4783*] Rikkert Frederix, University of Zurich

IN PRACTICE: NLO EVENT FILE

<event>

8	6	60.	2134	1783D-	-07 0.	17630	329D+03 0.7	546772	3D-02 (0.1298	2704D+	00								
	5	-1	0	0	501	0	0.0000000D	+00 0.	000000	00D+00	0.359	95691D	+02	0.3633	4450D+(02 0.	49500	000D+01	0.0	000D+00
	-5	-1	0	0	0	502	0.00000000	+00 0.	000000	00D+00	214	52182D-	+03	0.2145	7892D+(03 0.	49500	000D+01	0.0	000D+00
	23	2	1	. 2	0	0	36758481D	+01	2957552	20D+02	162	96618D	+03	0.2172	8455D+(03 0.	140592	294D+03	0.0	000D+00
	-11	1	3	3	0	0	0.38255724D	+01	488954	41D+01	472	20436D	+01	0.7800	0218D+(01 0.	00000	000D+00	0.0	000D+00
	11	1	3	3	0	0	0.28490378D	+02 0.		49D+02	814	35178D-	+02	0.9587	1413D+()2 0.	00000	000D+00	0.0	000D+00
	-13	1	3) 3) 3	0	0	14251913D - 217209950	+02 +02 -	2891294 7501270	46D+02	5/8	43590D 65266D	+UZ +02	0.83/8.	384 /D+(02650±($\int 2 0.$	000000	0000+00		
	21	⊥ 1	1	2	501	502	ם36758481 מ ח 36758481	+02	295755	200+01	- 155	-00000- 59952D-	+02	0.2962	8825D+($\begin{array}{ccc} 12 & 0 \\ 12 & 0 \end{array}$	75000	000D+00 000p+00		000+00 000+00
# 2	7 2	2	1 0	. 29803	3074D+	02 0.3	29803074D+0	2 3 7	0 0.0	000000	00D+00	0.000	0000	0D+00	0.00000	0000D	+00 0	.000000	00D+	0000,000
	wgt>																			
0.8	10824	15D-	04 0	.00000	000D+	00														
0.1	.03405	21D-	01 0	. 61345	5451D-	01 0.	0000000D+0	0 0.00	0000001	D+00 0	.00000	000D+0	0 0.	000000	00D+00	0.00	00000	0D+00 C	.000	00000D+0
0.9	57573	49D+	·02 0	.00000)000D+	00 0.	0000000D+0	0 0.95	7573491	D+02										
0.8	11500	42D+	·02 0	.00000)000D+	00 0.	0000000D+0	081	1500421	D+02										
0.6	43828	01D+	·01 0	.3825	5724D+	01	48895441D+0	1 0.17	0552201	D+01										
0.5	26047	21D+	·02 0	.28490)378D+	02 0.4	41808349D+0	214	4089201	D+02										
0.6	10810	25D+	02 -	.1425	1913D+	02	58912946D+0	2 0.75 1 0 E1	524433I											
0.2	33930	דעככ דערכ	.02 - .02 0	36759		02	/3813/94D+0 29575520D±0	1 0.51	6073081											
0.2	02964	тор+ 72р+	02 0)000D+		0000000000+0	0 0 70	2964721	D+02										
0.7	02964	72D+	·02 0	.00000	0000D+	00 0.0	00000000D+0	070	296472	D+02			$\sum_{i=1}^{n}$	fici	ents	ne	ede	d to	do	
0.5	65278	89D+	01 0	.39818	3980D+	01	36317634D+0	1 0.17	0552201	D+01							cuc	uio	uU	
0.6	33134	68D+	02 0	.29989	9085D+	02 0.	53866808D+0	214	4089201	D+02		t	he	rew	eigh	ting	r			
0.4	96726	04D+	02 -	.12819	978D+	02	47391733D+0	2 0.75	5244331	D+01				10.00	C1 511		⊃•			
0.2	19540	84D+	02 -	.21151	L006D+	02:	28433110D+0	1 0.51	5095511	D+01		F	ro	m the	ese co	beffi	cien	its, th	e	
0.0	56704	00D+ 6201	00 0 D-15			00 0.0		0 0.00			000+00			. +			haa			1
	000000	0201	D-10			000+00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0000+0		0000000	000+00	e	ever	it we	igni	can	be c	comp	ulec	l
0.0	00000	00D+	.00 0	.00000)00000+		000000000000000000000000000000000000000	0 0.00	0000001	D+00		f	or :	anv n	ew f	unc	tion	al for	m	
</td <td>'rwqt></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	'rwqt>													1	1					
</td <td>event</td> <td>></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>f</td> <td>or t</td> <td>the so</td> <td>cales,</td> <td>or</td> <td>any</td> <td>PDF</td> <td>set</td> <td></td>	event	>										f	or t	the so	cales,	or	any	PDF	set	
															,		V			

Reweight script

- The reweight script reads the event file and computes the new scale and PDF dependence
- No new matrix element evaluations and therefore very quick (reading/writing the event files takes the most amount of time...)

NLO EVENT FILE

<event>

8	66	0.23	19436	24E - 0	0.67	7725	434E+02 0.7546	07723E-02 0.10678127E+00
	-2	-1	0	0	0 5	501	0.00000000E+00	0.0000000E+00 0.21865056E+02 0.21867397E+02 0.32000000E+00 0.00001
	2	-1	0	0	501	0	0.0000000E+00	0.0000000E+0048855436E+03 0.48855447E+03 0.32000000E+00 0.00001
	23	2	1	2	0	0	0.16090158E+02	0.31869394E+0112083553E+03 0.15224618E+03 0.91151646E+02 0.0000
	23	2	1	2	0	0	16090158E+02	31869394E+0134585377E+03 0.35817569E+03 0.91683921E+02 0.0000
	-11	1	4	4	0	0	0.16220397E+01	23289878E+0232030340E+03 0.32115310E+03 0.00000000E+00 0.00001
	11	1	4	4	0	0	17712197E+02	0.20102938E+0225550375E+02 0.37022584E+02 0.00000000E+00 0.00001
	-13	1	3	3	0	0	0.12060879E+02	42965600E+0273678665E+02 0.86139731E+02 0.00000000E+00 0.00001
	13	1	3	3	0	0	0.40292781E+01	0.46152539E+0247156870E+02 0.66106447E+02 0.00000000E+00 0.00001
# 1	71	1 2	2 0.2	37024	64D+01	L 0.1	23702464D+01 8	0 0 0.99999991D+00 0.84548723D+00 0.11830766D+01 0.98156783D+00 (
<1	rwgt>							
0.1	L030671	0E-01	1 0.1	.03067	09E-01	1	3 20	
0.1	1030670	9E-01	1 0.9	08620	88E-02	2 0.1	11513117E-01	
0.1	1087126	6E-0	1 0.9	53736	45E-02	2 0.1	12193627E-01	
0.9	9841182	7E-02	2 0.8	71419	17E - 02	20.3	10951977E-01	Scale uncertainties
0.1		3E-0	1 0.1	.03014	80E-01	L		
0.1		6E-0		.02898	02E-01	L		(3x3 dependence on fac and ren scales)
0.1)/ビーU. 1日 01	I U.I	03505	05E-01	L 1		(ono dependence on lae and ren seales)
0.1	1021642	1E-0.	1 0.1	02021	06E-01	L 1		
0.1	LUJI043 1035775	0E-0.	1 0.1	02951	.00E-01	L 1		PDF uncertainties
0.1	1032111	2E-0.	1 0.1	02730	27E-01	L 1		
0.1	1036874	3E-01	1 0.1	02073	77E-01	1		(40 MSTW error sets)
0 1	1033546	OE-01	1 0.1	02031	60E-01	1		
0.1	1031979)7E-01	1 0.1	02942	43E-01	-		
0.1	L017287	9E-0	1 0.1	.05454	10E-01	-		
0.1	1038257	8E-0	1 0.1	.02599	74E-01	L		Cannot simply save max and min:
0.1	L028619	2E-0	1 0.1	03161	87E-01	L		
0.1	1032150	2E-03	1 0.1	.03055	49E-01	L		dependence is correlated within a given
0.1	1033978	3E-03	1 0.1	.02415	45E-01	L		
0.1	L032752	9E-03	1 0.1	.02988	82E-01	L		bin of a distribution.
0.1	L028828	4E-03	1 0.1	.03195	06E-01	L		
0.1	L028893	7E-0	1 0.1	.03179	10E-01	L		First the plots need to be filled before the
0.1	1025200	0E-03	1 0.1	03210	48E-01	L		i not the plots need to be miled before the
0.1	1033656	4E-01	1 0.1	.02989	02E-01	L		dependence can be computed
</td <td>/rwgt></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ucpendence can de computed</td>	/rwgt>							ucpendence can de computed
</td <td>/event></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>97</td>	/event>	•						97
	7. 1.	TT	•	•	\mathbf{C}	· 1		20

FILLING HISTOGRAMS

- Shower the LHE events as usual, but fill a separate histogram for each of the values of the scales and PDF set
- Compute --from the final set of histograms-- the uncertainties bin-by-bin

RESULTS 4-LEPTON PRODUCTION

- Scale dependence and PDF uncertainties computed without extra CPU cost
- Statistical fluctuations are correlated: cleaner extraction of uncertainties
- Low-pT region dominated by Sevents (NLO scale dependence), high-pT region by H-events ("LO+1j" scale dependence)

RESULTS 4-LEPTON PRODUCTION

- Scales and PDFs not the only sources of uncertainties
- Dependence on the shower can be significant; in
 particular in the region of phase-space where the
 Sudakov dominates

AMC@NLO IN MG5

AMC@NLO IN MADGRAPH

Marco Zaro has rewritten MadFKS in Madgraph 5:

- * "MadFKS from real" is identical in structure and function as current MadFKS for MadGraph 4. Working without problems, but not as well tested yet
- * "MadFKS from Born" allows for more efficient combination of integration channels, reducing one of the major limitations of current MadFKS. In particular, it allows for a Monte-Carlo sum over the real-emission processes (with FKS damping) contributing to a single Born process.
 - Still needs to be tested and validated. Unfortunately, first tests not as promising as I had hoped for...
- * No complications for aMC@NLO (structure identical to MadFKS: if MadFKS is working, so is aMC@NLO)

RUNNING AMC@NLO V5

Generation of the process is similar to LO MadGraph5:

With MadLoop	Without MadLoop (real-emission corrections only)
set fks_mode born	set fks_mode born
import model loop_sm	import model sm (or any other model)
generate p p > e+ ve [QCD]	generate p p > e+ ve [real=QCD]
output PROCESS_DIR	output PROCESS_DIR
quit	quit

And run in the process directory itself. No 'launch' command yet.

SUMMARY

- Current aMC@NLO up and running smoothly in MadGraph v4:
 - MadFKS for factoring IR singularities
 - MadLoop for the virtual corrections
 - Shower subtraction terms implemented for Herwig6 and Pythia6 (Q²), and ongoing for Herwig++, Pythia6 (p_T) and Pythia8
- MadFKS (and therefore also aMC@NLO) has been rewritten in MadGraph 5. "MadFKS from Born" reduces the number of integration channels enormously, but speed-up not so significant. More testing for more non-trivial processes needed

AMC@NLO WEBSITE

aMC@NLO

http://amcatnlo.cern.ch

- On the aMC@NLO website you can find
 - # Latest news on aMC@NLO
 - ** NLO event samples ready for showering and analysis
 - Compare with MadLoop: a single phase-space point for the virtual for any user-defined process in the SM. Useful for comparison/checking private calculations