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Leading order

For many of the theory predictions needed in the searches for 
new physics as well as measuring properties of the SM, tree-
level matrix element generators (Alpgen, MadGraph/
MadEvent, Sherpa) plus multi-parton merging techniques 
(CKKW-L, MLM) are used

The reasons for this are clear:

In many regions of phase-space they do a very good job, in 
particular for shapes of distributions

Parton showers and hadronizations models are tuned to data 

Many flexible lowest order (LO) tools are readily available 
and easy to use
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Why even bother to go beyond LOwPS matching?
Some typical motivations (by theorists) for (parton level) NLO 
are:

Better description of jet structure
(2 partons instead of 1)

New channels opening up
(e.g. qg vs gg initial states)

“NLO” effects on distributions
(e.g. kinematics dependent K-factor)

However, these are actually motivations to do tree-level parton-
shower matching. Genuine NLO effects are not an issue
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Why we need NLO...
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Why we really
need NLO

Genuine reasons to go to (N)NLO:

Total rates are much better described

Reduced theoretical uncertainties due to meaningful scale 
dependence

Proper estimate of the PDF uncertainties

Description of pure higher order effects*
(like ttbar Forward-Backward asymmetry)
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*although, one might consider this to be LO
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Why we need 
NLOwPS

When can we better make use of NLOwPS predictions?

Large backgrounds that are difficult to normalize to data

When multivariate techniques (e.g. Boosted decision trees, 
Neural Network) are essential

Over-stretching fixed-order results can give biases

It doesn’t hurt using them (when they are easy and quick to 
run)

So, in general, when precision is an issue and results dependent 
on theoretical input.
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NLOwPS allows one to use NLO information in all 
aspects of an experimental analysis
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Why we need 
NLOwPS

Some prime examples are:

b-tagging: same as in experiment, for processes in which 
NLO results are desirable (e.g. Vector boson plus heavy 
flavor)

Behavior of extra jets (described by perturbative or non-
perturbative physics). Typical example is jet-veto systematics

Description of genuine NLO effects. Typical example is top-
antitop forward-backward asymmetry
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NLOwPS: 
implementation

The three difficulties of NLOwPS event generation

Virtual amplitudes: how to compute the loops automatically in a 
reasonable amount of time

How to deal with infra-red divergences and phase-space integration 
in an efficient way: virtual corrections and real-emission corrections 
are separately divergent and only their sum is finite (for IR-safe 
observables) according to the KLN theorem

How to match these processes to a parton shower without double 
counting

All three implemented in the automatic aMC@NLO package!
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Virtual corrections

MadLoop [Hirschi, RF, Frixione, Garzelli, Maltoni, Pittau (2011)] uses the OPP 
method [Ossola, Papadopoulos & Pittau (2006)] as implemented in CutTools 
[Ossola, Papadopoulos & Pittau (2007)] to compute virtual contributions from 
tree-level diagrams

Based on setting up a system of linear equations to find the coefficients 
in front of the basis of scalar integrals by sampling the integrand

Needs special treatment to get also the rational term

Completely general (and numerical) method

More in Valentin’s presentation about current status and prospects for 
MadLoop in MadGraph 5
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Factoring IR poles

The MadFKS [RF., Frixione, Maltoni & Stelzer (2009)] code uses the FKS 
subtraction scheme [Frixione, Kunszt, Signer (1995)] to factor the soft and 
collinear poles out of the phase-space integrals and cancel them 
against the poles from the virtual corrections

Based on splitting the phase-space integrals in regions in which there 
is (maximally) one collinear and one soft divergence

Allows for optimized numerical phase-space integration

Parallel in nature: can make use of many CPUs simultaneously to 
speed-up the calculation

Process independent & Model independent
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Matching to the 
Parton Shower

There is double counting between the real emission matrix 
elements and the parton shower: the extra radiation can come 
from the matrix elements or the parton shower

There is also an overlap between the virtual corrections and the 
Sudakov suppression in the zero-emission probability
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Parton shower

...

...Born+Virtual:

Real emission:
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Double counting in 
virtual/Sudakov

The Sudakov factor Δ (which is responsible for the resummation of all 
the radiation in the shower) is the no-emission probability

It’s defined to be Δ = 1 - P, where P is the probability for a branching to 
occur

By using the conservation of probability in this way, Δ contains 
contributions from the virtual corrections implicitly

Because at NLO the virtual corrections are already included via explicit 
matrix elements, Δ is double counting with the virtual corrections

In fact, because the shower is unitary, what we are double counting in 
the real emission corrections is exactly equal to what we are double 
counting in the virtual corrections (but with opposite sign)!
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MC@NLO procedure
Parton shower

...

...Born+Virtual:

Real emission:

Double counting is explicitly removed by including the 
“shower subtraction terms”

[Frixione & Webber (2002)]

d�MC@NLO

dO
=


d�m(B +

Z

loop

V +

Z
d�1MC)

�
F (m)
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+
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�
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MC
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Current status of 
MC subtraction

The MC subtraction terms are Shower Monte Carlo specific: each 
partons shower needs different subtraction terms

Current status of aMC@NLO is

aMC@NLO/Herwig6: working and fully tested

aMC@NLO/Pythia6 (Q2-ordered): working and well-tested

aMC@NLO/Pythia6 (pT-ordered): initial state implemented, 
final state is work in progress. High priority

aMC@NLO/Pythia8: initial state implemented, final state is 
work in progress. High priority

aMC@NLO/Herwig++: all implemented but final state needs 
still validation. Lower priority
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The aMC@NLO code
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MadGraph
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The aMC@NLO code
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MadGraph MadFKS
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The aMC@NLO code
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MadGraph MadFKS

MC@NLO
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The aMC@NLO code
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MadGraph MadFKS

MadLoop
(CutTools) MC@NLO
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The aMC@NLO code
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MadGraph MadFKS

MadLoop
(CutTools) MC@NLO

aMC@NLO

http://amcatnlo.cern.ch

http://amcatnlo.cern.ch
http://amcatnlo.cern.ch


Scale dependence & 
PDF uncertainties
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Scale dependence and 
PDF uncertainties

Any short-distance cross section can be written as a 
linear combination of scale and PDF dependent 
terms, with coefficients independent of both scales 
and PDFs.

Therefore, saving these coefficients in the event file 
allows for a posterior evaluation of scale and PDF 
uncertainties, by evaluating their dependence event-
by-event, without needing to rerun the generation of 
the events
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Reweighting at LO

Straight-forward at LO

Factorization scale only enters PDFs

Renormalization scale only enters in alpha_s

So, we can simply reweight event-by-events with the factor

to get the scale & PDF dependence

21

fa(µF )⌦ fb(µF )⌦ ↵s(µR)
b|M |2

where

Ri = f 0
1(x1;i, µ

0
F )f

0
2(x2;i, µ

0
F )g

2b
S (µ0

R)w
(B,n)(Kn;i)

,

d�(LO)

dµBjdµn
(Kn;i, x1;i, x2;i) . (1.11)

The denominator here is computed using eq. (1.4), i.e. with the original choices of scales

and PDFs. As we shall show in the following, an analogous equation will hold for both the

NLO and MC@NLO cases. From eq. (1.4) we obtain:

Ri =
f 0
1(x1;i, µ

0
F )f

0
2(x2;i, µ

0
F )g

2b
S (µ0

R)

f1(x1;i, µF )f2(x2;i, µF )g2bS (µR)
, (1.12)

which shows explicitly that the computation of Ri does not entail any matrix-element

calculation. Therefore, after performing the bulk of the calculation, i.e. the determination

of the set in eq. (1.6), one can fill a “central” histogram with the weights defined in

eq. (1.7), and as many “variation” histograms as one likes with the weights that appear

on the r.h.s. of eq. (1.10), by simply recomputing the factors Ri for all the di↵erent scales

and PDFs needed.

The procedure outlined above is exact when applied to eq. (1.8), but it implies an

approximation in the case of eq. (1.9). This is because the quantity MC(Kn;i, x1;i, x2;i)

does contain an implicit dependence on fi, and these are not replaced by f 0
i when using

eq. (1.10) (since such a replacement would imply performing the shower for each new choice

of PDFs). However, this approximation is usually a very good one, barring perhaps large-

rapidity regions. This is empirically well known, and is due to the fact that the Sudakov

form factors used in the backward evolution of initial-state partons are sensitive to the

ratios of PDFs, whose variation is much smaller than that of their absolute values (the

more so within a PDF-error set, which is the typical application of the procedure discussed

here). Furthermore, it should be clear that both scale and PDF uncertainties are defined

using well-motivated but ultimately arbitrary conventions, and therefore are not quantities

that can be computed with arbitrary precision. Hence, in this context the approximation

mentioned before is quite negligible.

We now turn to discussing the case of NLO short-distance cross sections. Equa-

tion (1.4) is generalized as follows:

d�(NLO) =
X

↵

d�(NLO,↵) , (1.13)

d�(NLO,↵) = f1(x
(↵)
1 , µ

(↵)
F )f2(x

(↵)
2 , µ

(↵)
F )W (↵)dµBjdµn+1 , (1.14)

where ↵ = E, S, C, and SC correspond to the contributions of the fully-resolved config-

uration (the event), and of its soft, collinear, and soft-collinear limits (the counterevents)

respectively. The quantities W (↵) will be written as follows:

W (↵) = g2b+2
S (µ(↵)

R )

 

cW
(↵)
0 +cW (↵)

F log
µ
(↵)2

F

Q2
+cW (↵)

R log
µ
(↵)2

R

Q2

!

+ g2bS (µ(↵)
R )cWB�↵S , (1.15)
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Reweighting at NLO

A bit more involved at NLO

Scales also enters the process explicitly

In aMC@NLO it is even a bit more involved...
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where Q is the Ellis-Sexton scale; in eq. (1.15), this scale (which is extensively used in

the manipulation of the one-loop contribution – see ref. [?] for a discussion in the context

of MadFKS) o↵ers a convenient way to parametrize the dependence on the factorization

and renormalization scales. As the notation in eqs. (1.14) and (1.15) suggests, the values

that these scales take in the event and counterevents may be di↵erent from each other

(however, they must tend to the same value when considering the various infrared limits).

Furthermore, eq. (1.14) takes into account the fact that, when using event projection

to write an NLO partonic cross section (see ref. [?]), the Bjorken x’s of the event and

counterevents need not coincide. The last term on the r.h.s. of eq. (1.15) is the Born

contribution, which in MadFKS can be integrated simultaneously with the other terms

that enter an NLO cross section; having a soft-type kinematics, it is naturally associated

with the soft counterterm. The coe�cients cW (↵)
0 , cW (↵)

F , and cW (↵)
R introduced in eq. (1.15)

are the analogue of w(B,n) defined in eq. (1.5) – they are scale- and PDF-independent;

their explicit forms will be given in appendix A. As far as cWB is concerned, it is equal to

w(B,n), up to a normalization factor (due to the di↵erent integration measures in eq. (1.4)

and (1.14)).

The integration of the NLO cross section leads to the set of weighted events2:

(

n

K(↵)
n+1;i , x

(↵)
1;i , x

(↵)
2;i , ⌅

(↵)
i

oSC

↵=E
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, (1.16)

with

⌅(↵)
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d�(NLO,↵)

dµBjdµn+1

⇣

K(↵)
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(↵)
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(↵)
2;i

⌘

. (1.17)

Equation (1.8) is generalized as follows:

N
X

i=1

X

↵

⇥
⇣

O
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K(↵)
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⌘

�OLOW

⌘

⇥
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⌘⌘

⌅(↵)
i . (1.18)

As is well known, for any given i the weights defined in eq. (1.17) may diverge, but the sum

in eq. (1.18) is finite for any infrared-safe observable. When changing scales and PDFs,

we can now adopt the same procedure introduced before for the LO cross sections, and

defined the rescaling factors:

R(↵)
i = f 0

1(x
(↵)
1;i , µ

0(↵)
F )f 0

2(x
(↵)
2;i , µ
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F )
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R )
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(↵)
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n+1;i) log
µ0(↵)2

F

Q2
+cW (↵)

R (K(↵)
n+1;i) log

µ0(↵)2

R

Q2

!

+ g2bS (µ0(↵)
R )cWB(K(↵)

n+1;i)�↵S

#,
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(K(↵)
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1;i , x

(↵)
2;i ) . (1.19)

2We remind the reader that parton-level, NLO events not matched with showers cannot be unweighted

without the introduction of an arbitrary and unphysical cuto↵.
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Reweighting at 
MC@NLO
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for weighted events, and
∣∣∣Ξ(H)

i

∣∣∣ =
∣∣∣Ξ(S)

i

∣∣∣ = constant (2.30)

for unweighted events. One can now define rescaling factors analogous to those of eqs. (2.13)

and (2.21):
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i =

{

f ′
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2;i , µ
′(E)
F )g2b+2

S (µ′(E)
R )

×


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Several observations are in order here. Firstly, the weights defined in eq. (2.29) are finite,

at variance with those relevant to the computation of the parton-level NLO cross section,

eq. (2.19). This is due to the properties of the MC counterterms, and to the fact that

the kinematics of the H and S events is uniquely defined. Secondly, and as a consequence

of the former point, the quantities relevant to the counterevents are summed together in

eq. (2.32), at variance with what happens in eq. (2.21). Thirdly, in eqs. (2.31) and (2.32)

the scales entering the counterevents have been set equal to the values assumed in the

soft configurations, and those entering the MC counterterms equal to the corresponding

NLO event contributions. Many variants of these choices are possible (which is part of the

ambiguity in the definition of the scale dependence in an NLO computation), and those

given here are simply the current defaults in aMC@NLO.

Using the definitions given above, eq. (2.11) is generalized as follows:

NH∑

i=1

Θ(O (MC(EH;i))−OLOW)Θ(OUPP −O (MC(EH;i))) Ξ
(H)
i R(H)

i , (2.33)

NS∑

i=1

Θ(O (MC(ES;i))−OLOW)Θ(OUPP −O (MC(ES;i))) Ξ(S)
i R(S)

i . (2.34)
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More details can be found in
[RF, Frixione, Hirschi, Maltoni, Pittau, Torrielli, 1110.4783]
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In practice:
NLO event file

24

  <event>
  8     66 0.21341783D-07 0.17630329D+03 0.75467723D-02 0.12982704D+00
        5 -1    0    0  501    0 0.00000000D+00 0.00000000D+00 0.35995691D+02 0.36334450D+02 0.49500000D+01 0.0000D+00 0.0000D+00
       -5 -1    0    0    0  502 0.00000000D+00 0.00000000D+00 -.21452182D+03 0.21457892D+03 0.49500000D+01 0.0000D+00 0.0000D+00
       23  2    1    2    0    0 -.36758481D+01 -.29575520D+02 -.16296618D+03 0.21728455D+03 0.14059294D+03 0.0000D+00 0.0000D+00
      -11  1    3    3    0    0 0.38255724D+01 -.48895441D+01 -.47220436D+01 0.78000218D+01 0.00000000D+00 0.0000D+00 0.0000D+00
       11  1    3    3    0    0 0.28490378D+02 0.41808349D+02 -.81435178D+02 0.95871413D+02 0.00000000D+00 0.0000D+00 0.0000D+00
      -13  1    3    3    0    0 -.14251913D+02 -.58912946D+02 -.57843590D+02 0.83783847D+02 0.00000000D+00 0.0000D+00 0.0000D+00
       13  1    3    3    0    0 -.21739885D+02 -.75813794D+01 -.18965366D+02 0.29829265D+02 0.00000000D+00 0.0000D+00 0.0000D+00
       21  1    1    2  501  502 0.36758481D+01 0.29575520D+02 -.15559952D+02 0.33628825D+02 0.75000000D+00 0.0000D+00 0.0000D+00
# 2  7  2  2  1 0.29803074D+02 0.29803074D+02 3  7  0 0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00
  <rwgt>
 0.81082415D-04 0.00000000D+00
 0.10340521D-01 0.61345451D-01 0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00
 0.95757349D+02 0.00000000D+00 0.00000000D+00 0.95757349D+02
 0.81150042D+02 0.00000000D+00 0.00000000D+00 -.81150042D+02
 0.64382801D+01 0.38255724D+01 -.48895441D+01 0.17055220D+01
 0.52604721D+02 0.28490378D+02 0.41808349D+02 -.14408920D+02
 0.61081025D+02 -.14251913D+02 -.58912946D+02 0.75524433D+01
 0.23593055D+02 -.21739885D+02 -.75813794D+01 0.51509551D+01
 0.33190310D+02 0.36758481D+01 0.29575520D+02 0.14607308D+02
 0.70296472D+02 0.00000000D+00 0.00000000D+00 0.70296472D+02
 0.70296472D+02 0.00000000D+00 0.00000000D+00 -.70296472D+02
 0.56527889D+01 0.39818980D+01 -.36317634D+01 0.17055220D+01
 0.63313468D+02 0.29989085D+02 0.53866808D+02 -.14408920D+02
 0.49672604D+02 -.12819978D+02 -.47391733D+02 0.75524433D+01
 0.21954084D+02 -.21151006D+02 -.28433110D+01 0.51509551D+01
 0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00
 0.4567946201D-15 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00
 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00
 0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00
  </rwgt>
  </event>

Coefficients needed to do 
the reweighting.
From these coefficients, the 
event weight can be computed 
for any new functional form 
for the scales, or any PDF set
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Reweight script

The reweight script reads the event file and computes the 
new scale and PDF dependence

No new matrix element evaluations and therefore very quick 
(reading/writing the event files takes the most amount of 
time...)

25

events.lhe events.lhe.rwgt
reweight script
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  <event>
  8     66 0.21943624E-07 0.67725434E+02 0.75467723E-02 0.10678127E+00
       -2 -1    0    0    0  501 0.00000000E+00 0.00000000E+00 0.21865056E+02 0.21867397E+02 0.32000000E+00 0.0000E+00 0.0000E+00
        2 -1    0    0  501    0 0.00000000E+00 0.00000000E+00 -.48855436E+03 0.48855447E+03 0.32000000E+00 0.0000E+00 0.0000E+00
       23  2    1    2    0    0 0.16090158E+02 0.31869394E+01 -.12083553E+03 0.15224618E+03 0.91151646E+02 0.0000E+00 0.0000E+00
       23  2    1    2    0    0 -.16090158E+02 -.31869394E+01 -.34585377E+03 0.35817569E+03 0.91683921E+02 0.0000E+00 0.0000E+00
      -11  1    4    4    0    0 0.16220397E+01 -.23289878E+02 -.32030340E+03 0.32115310E+03 0.00000000E+00 0.0000E+00 0.0000E+00
       11  1    4    4    0    0 -.17712197E+02 0.20102938E+02 -.25550375E+02 0.37022584E+02 0.00000000E+00 0.0000E+00 0.0000E+00
      -13  1    3    3    0    0 0.12060879E+02 -.42965600E+02 -.73678665E+02 0.86139731E+02 0.00000000E+00 0.0000E+00 0.0000E+00
       13  1    3    3    0    0 0.40292781E+01 0.46152539E+02 -.47156870E+02 0.66106447E+02 0.00000000E+00 0.0000E+00 0.0000E+00
# 1  7  1  1  2 0.23702464D+01 0.23702464D+01 8  0  0 0.99999991D+00 0.84548723D+00 0.11830766D+01 0.98156783D+00 0.10267446D+01
  <rwgt>
 0.10306710E-01 0.10306709E-01   3  20
 0.10306709E-01 0.90862088E-02 0.11513117E-01
 0.10871266E-01 0.95373645E-02 0.12193627E-01
 0.98411827E-02 0.87141917E-02 0.10951977E-01
 0.10313303E-01 0.10301480E-01
 0.10321776E-01 0.10289802E-01
 0.10277207E-01 0.10350505E-01
 0.10293111E-01 0.10315859E-01
 0.10316430E-01 0.10293186E-01
 0.10357758E-01 0.10275027E-01
 0.10321112E-01 0.10287327E-01
 0.10368743E-01 0.10284177E-01
 0.10335460E-01 0.10243760E-01
 0.10319797E-01 0.10294243E-01
 0.10172879E-01 0.10545410E-01
 0.10382578E-01 0.10259974E-01
 0.10286192E-01 0.10316187E-01
 0.10321502E-01 0.10305549E-01
 0.10339783E-01 0.10241545E-01
 0.10327529E-01 0.10298882E-01
 0.10288284E-01 0.10319506E-01
 0.10288937E-01 0.10317910E-01
 0.10252000E-01 0.10321048E-01
 0.10336564E-01 0.10298902E-01
  </rwgt>
  </event>

NLO event file

Scale uncertainties
(3x3 dependence on fac and ren scales)

PDF uncertainties
(40 MSTW error sets)

Cannot simply save max and min: 
dependence is correlated within a given 
bin of a distribution.
First the plots need to be filled before the 
dependence can be computed
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Filling histograms

Shower the LHE events as usual, but fill a separate 
histogram for each of the values of the scales and PDF set

Compute --from the final set of histograms-- the uncertainties 
bin-by-bin

27

events.lhe.rwgt
histograms for 

each scale value 
and PDF set

Parton shower
& analysis
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Results
4-lepton production

Scale dependence and PDF 
uncertainties computed without 
extra CPU cost

Statistical fluctuations are 
correlated: cleaner extraction of 
uncertainties

Low-pT region dominated by S-
events (NLO scale dependence), 
high-pT region by H-events 
(“LO+1j” scale dependence)

28Figure 1: Four-lepton invariant mass (left panel) and transverse momentum (right panel), as pre-
dicted by aMC@NLO(solid black), aMC@LO(solid blue), and at the (parton-level) NLO (dashed
red) and LO (dashed magenta). The middle insets show the aMC@NLO scale (dashed red) and
PDF (black solid) fractional uncertainties, and the lower insets the ratio of the two leptonic channels,
eq. (3.5). See the text for details.

These have very different behaviours w.r.t. the extra radiation provided by the parton

shower, with the former being (almost) completely insensitive to it, and the latter (almost)

maximally sensitive to it. In fact, the predictions for the invariant mass are basically

independent of the shower, with NLO (LO) being equal to aMC@NLO (aMC@LO) over

the whole range considered. The NLO corrections amount largely to an overall rescaling,

with a very minimal tendency to harden the spectrum. The four-lepton pT , on the other

hand, is a well known example of an observable whose distribution at the parton-level LO

is a delta function (in this case, at pT = 0). Radiation, be it through either showering or

hard emission provided by real matrix elements in the NLO computation, fills the phase

space with radically different characteristics, aMC@LO being meaningful at small pT and

NLO parton level at large pT – aMC@NLO correctly interpolates between the two. The

different behaviours under extra radiation of the two observables shown in fig. 1 is reflected

in the scale uncertainty: while in the case of the invariant mass the band becomes very

marginally wider towards large M(e+e−µ+µ−) values, the corresponding effect is dramatic

in the case of the transverse momentum. This is easy to understand from the purely

perturbative point of view, and is due to the fact that, in spite of being O(αS) for any

pT > 0, the transverse momentum in this range is effectively an LO observable (the NLO

effects being confined to pT = 0). The matching with shower blurs this picture, and in

particular it gives rise to the counterintuitive result where the scale dependence increases,

rather than decreasing, when moving towards large pT [18]. Finally, the lower insets of

fig. 1 display the ratio defined in eq. (3.5) which, in agreement with the results of table 2,

is equal to one half in the whole kinematic ranges considered. The only exception is the

small invariant mass region, where off-resonance effects become relevant.

– 13 –
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Results
4-lepton production

Scales and PDFs not the 
only sources of 
uncertainties

Dependence on the shower 
can be significant; in 
particular in the region of 
phase-space where the 
Sudakov dominates

29

Figure 4: Same observables as in fig. 1, for aMC@NLO+gg HERWIG (solid black) and Pythia

(dashed blue) results. The rescaled gg contributions withHERWIG (open black boxes) and Pythia

(open blue circles) are shown separately. Middle insets: scale (dashed red) and PDF (solid black)
fractional uncertainties. Lower insets: aMC@LO/(aMC@NLO+gg) with HERWIG (solid black)
and Pythia (dashed blue).

O(αS), the predictions are quite independent of whether a shower is generated or not.

Slight differences can be seen in the case of the ∆φ distribution, which is indeed known to

be more sensitive than pseudorapidity to extra radiation. The small-pT dominance ensures

that scale and PDF uncertainties are flat over the whole kinematic ranges, and of the order

of those relevant to total cross section.

We now discuss the impact of the O(α2
S) gg channel on our predictions. The argument

for considering such a channel, despite its being of the same perturbative order as all other

NNLO contributions which cannot be included, is the dominance of its parton luminosity

over those of the qq̄ and qg channels. This dominance grows stronger with decreasing

final-state invariant masses, and hence the O(α2
S) versus NLO comparison is significantly

influenced by the cut in eq. (3.3) – by lowering such a cut, the relative importance of the

gg contribution will grow bigger than the 5%-ish reported in table 2. We also discuss in the

following the differences that arise when matching our calculation to Pythia6 rather than

toHERWIG. We remind the reader that, depending on input parameters, Pythia is rather

effective in producing radiation in the whole kinematically-accessible phase space. This is

not particularly useful in the context of a matched computation, where hard radiation

is provided (in a way fully consistent with perturbation theory) by the underlying real-

emission matrix elements. Therefore, we have set the maximum virtuality in Pythia

equal to the four-lepton invariant mass. For consistency, this setting has been used also

when showering the gg-initiated contribution.

Figures 4, 5 and 6 present the same observables as figs. 1, 2 and 3 respectively. In

the main frame, we show the aMC@NLO predictions plus the gg contribution (including

shower), as resulting from HERWIG (solid black) and Pythia (dashed blue) – we shall

– 16 –
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aMC@NLO in MadGraph 5
Marco Zaro has rewritten MadFKS in Madgraph 5:

“MadFKS from real” is identical in structure and function as 
current MadFKS for MadGraph 4. Working without problems, 
but not as well tested yet

“MadFKS from Born” allows for more efficient combination of 
integration channels, reducing one of the major limitations of 
current MadFKS. In particular, it allows for a Monte-Carlo sum 
over the real-emission processes (with FKS damping) contributing 
to a single Born process.

Still needs to be tested and validated. Unfortunately, first tests 
not as promising as I had hoped for...

No complications for aMC@NLO (structure identical to MadFKS: if 
MadFKS is working, so is aMC@NLO)

31
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Running aMC@NLO v5
Generation of the process is similar to LO MadGraph5:

32

With MadLoop Without MadLoop
(real-emission corrections only)

set fks_mode born set fks_mode born

import model loop_sm import model sm
             (or any other model)

generate p p > e+ ve [QCD] generate p p > e+ ve [real=QCD]

output PROCESS_DIR output PROCESS_DIR

quit quit

And run in the process directory itself. No ‘launch’ command yet.
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Summary

Current aMC@NLO up and running smoothly in MadGraph v4:

MadFKS for factoring IR singularities

MadLoop for the virtual corrections

Shower subtraction terms implemented for Herwig6 and 
Pythia6 (Q2), and ongoing for Herwig++, Pythia6 (pT) and 
Pythia8

MadFKS (and therefore also aMC@NLO) has been rewritten in 
MadGraph 5. “MadFKS from Born” reduces the number of 
integration channels enormously, but speed-up not so significant. 
More testing for more non-trivial processes needed

33
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aMC@NLO website

On the aMC@NLO website you can find

Latest news on aMC@NLO

NLO event samples ready for showering and analysis

Compare with MadLoop: a single phase-space point 
for the virtual for any user-defined process in the 
SM. Useful for comparison/checking private 
calculations

34

aMC@NLO
http://amcatnlo.cern.ch

http://amcatnlo.cern.ch
http://amcatnlo.cern.ch

