
FormCalc 7

Thomas Hahn

Max-Planck-Institut für Physik
München

From microsoft.com/en-us/windows7:
Why get Version 7?
• To simplify everyday tasks
• To work the way you want
• To do new things

T. Hahn, FormCalc 7 – p.1

Automated Diagram Evaluation

Diagram Generation:

• Create the topologies
• Insert fields
• Apply the Feynman rules
• Paint the diagrams

Algebraic Simplification:

• Contract indices
• Calculate traces
• Reduce tensor integrals
• Introduce abbreviations

Numerical Evaluation:

• Convert Mathematica output to Fortran code
• Supply a driver program
• Implementation of the integrals

Symbolic manipulation
(Computer Algebra)
for the structural and
algebraic operations.

Compiled high-level
language (Fortran) for
the numerical evaluation.

FeynArts

Amplitudes

FormCalc

Fortran Code

LoopTools

|M|2 Cross-sections, Decay rates, . . .

T. Hahn, FormCalc 7 – p.2

FeynArts

Find all distinct ways of connect-
ing incoming and outgoing lines

CreateTopologies

Topologies

Determine all allowed
combinations of fields

InsertFields

Draw the results
Paint

Diagrams

Apply the Feynman rules

CreateFeynAmp
Amplitudes

further
processing

T. Hahn, FormCalc 7 – p.3

Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[identifier ,

loop momenta,
generic amplitude,
insertions]

GraphID[Topology == 1, Generic == 1]

T. Hahn, FormCalc 7 – p.4

Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[identifier,

loop momenta ,

generic amplitude,
insertions]

Integral[q1]

T. Hahn, FormCalc 7 – p.5

Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[identifier,
loop momenta,

generic amplitude ,

insertions]

I

32 Pi4
RelativeCF ...prefactor

FeynAmpDenominator[
1

q12 - Mass[S[Gen3]]2
,

1

(-p1 + q1)2 - Mass[S[Gen4]]2
]loop denominators

(p1 - 2 q1)[Lor1] (-p1 + 2 q1)[Lor2] kin. coupling structure

ep[V[1], p1, Lor1] ep*[V[1], k1, Lor2]polarization vectors

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]]

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]]coupling constants

T. Hahn, FormCalc 7 – p.6

Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[identifier,
loop momenta,
generic amplitude,

insertions]

{ Mass[S[Gen3]],

Mass[S[Gen4]],

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]],

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]],

RelativeCF } ->

Insertions[Classes][{MW, MW, I EL, -I EL, 2}]

T. Hahn, FormCalc 7 – p.7

Algebraic Simplification

The amplitudes of CreateFeynAmp are in no good shape for
direct numerical evaluation.

A number of steps have to be done analytically:

• contract indices as far as possible,

• evaluate fermion traces,

• perform the tensor reduction,

• add local terms arising from D·(divergent integral)
(dim reg + dim red),

• simplify open fermion chains,

• simplify and compute the square of SU(N) structures,

• “compactify” the results as much as possible.

T. Hahn, FormCalc 7 – p.8

FormCalc Internals

FormCalc

Mathematica
FORM

FeynArts
amplitudes

Analytical
results

Fortran

Generated Code

SquaredME
RenConst

Driver
programs

Utilities
library

T. Hahn, FormCalc 7 – p.9

FormCalc Output

A typical term in the output looks like

C0i[cc12, MW2, MW2, S, MW2, MZ2, MW2] *

(-4 Alfa2 MW2 CW2/SW2 S AbbSum16 +

32 Alfa2 CW2/SW2 S2 AbbSum28 +

4 Alfa2 CW2/SW2 S2 AbbSum30 -

8 Alfa2 CW2/SW2 S2 AbbSum7 +

Alfa2 CW2/SW2 S (T - U) Abb1 +

8 Alfa2 CW2/SW2 S (T - U) AbbSum29)

= loop integral = kinematical variables

= constants = automatically introduced abbreviations

T. Hahn, FormCalc 7 – p.10

Abbreviations

Outright factorization is usually out of question.
Abbreviations are necessary to reduce size of expressions.

AbbSum29 = Abb2 + Abb22 + Abb23 + Abb3

Abb22 = Pair1 Pair3 Pair6

Pair3 = Pair[e[3], k[1]]

The full expression corresponding to AbbSum29 is

Pair[e[1], e[2]] Pair[e[3], k[1]] Pair[e[4], k[1]] +

Pair[e[1], e[2]] Pair[e[3], k[2]] Pair[e[4], k[1]] +

Pair[e[1], e[2]] Pair[e[3], k[1]] Pair[e[4], k[2]] +

Pair[e[1], e[2]] Pair[e[3], k[2]] Pair[e[4], k[2]]

T. Hahn, FormCalc 7 – p.11

FormCalc 7

New Features:

• Analytic tensor reduction,

• Unitarity methods (OPP),

• Improved code generation,

• Command-line parameters for model initialization,
MSSM (SM) initialization via FeynHiggs.

• Auxiliary functions for operator matching.

Cuba:

• Built-in Parallelization.

T. Hahn, FormCalc 7 – p.12

Analytic Tensor Reduction

Work done in collaboration with S. Agrawal.

Passarino-Veltman reduction is still useful. So far:

• introduction of tensor coefficients in FormCalc, e.g.

∫
d4q

qµqν
D0D1

∼ Bµν = gµνB00 + pµpνB11

• complete reduction to scalars only numerically in
LoopTools.

Available now: Analytic Reduction in FormCalc.

CalcFeynAmp[..., PaVeReduce -> True]

T. Hahn, FormCalc 7 – p.13

Analytic Tensor Reduction

Reduction formulas from Denner & Dittmaier, hep-ph/0509141.
Not straightforward to implement in FORM.

Apart from analytic considerations, this is useful e.g. for
low-energy observables, where small momentum transfer may
lead to numerical instabilities in numerical reduction, as in:

Bµ = pµB1 for p → 0

Unless FormCalc finds a way to cancel it immediately, the
inverse Gram determinant appears wrapped in IGram in the
output, so is available for further modifications.

T. Hahn, FormCalc 7 – p.14

Unitarity Methods

Work done in collaboration with E. Mirabella.

We employ the OPP (Ossola, Papadopoulos, Pittau) methods
as implemented in the two libraries CutTools and Samurai.

Instead of introducing tensor coefficients, the numerator is put
into a subroutine which is sampled by the OPP function, as in:

εµ
1
εν2Bµν(p,m

2

1,m
2

2) = Bcut(2, N, p,m2

1,m
2

2)

where

N(qµ) = (ε1 · q) (ε2 · q)

T. Hahn, FormCalc 7 – p.15

Unitarity Methods

So far tested on a handful of 2 → 2 and 2 → 3 processes, get
agreement to about 10 digits.

Performance somewhat wanting as of now,
Passarino–Veltman beats OPP hands down in the processes
we looked at.

Currently optimizing performance:

• Option to specify the N in N -point up to which
Passarino–Veltman is used, above OPP.

• Minimizing OPP calls to reduce sampling effort – work in
progress.

• Already looked into tweaking caching of loop integrals,
but pointless: lower-N integrals also needed by OPP.

T. Hahn, FormCalc 7 – p.16

Numerical Evaluation in Fortran 77

user-level code included in FormCalc

generated code, “black box”

Cross-sections, Decay rates, Asymmetries . . .

SquaredME.F
master subroutine

abbr0_s.F

abbr0_angle.F
...

abbreviations
(invoked only

when necessary)

born.F

self.F
...

form factors

xsection.F
driver program

run.F
parameters for this run

process.h
process definition

main.F

CPU-time (rough)

compute abbrtree
}

5%

compute abbr1-loop
}

95%

compute M
tree

}

.1 %

compute M
1-loop

}

.1 %

T. Hahn, FormCalc 7 – p.17

Code generation

Currently: Output in Fortran 77.
Code generator is rather sophisticated by now, e.g.

• Expressions too large for Fortran are split into parts, as in

var = part1

var = var + part2

...

• High level of optimization, e.g. common subexpressions
are pulled out and computed in temporary variables.

• Many ancillary functions make code generation versatile
and highly automatable, such that the resulting code
needs few or no changes by hand.

T. Hahn, FormCalc 7 – p.18

Improvements in Code Generation

• Output in C largely finished, makes integration into
C/C++ codes easier and allows for GPU programming.

• Loops and tests handled through macros, e.g.

LOOP(var, 1,10,1)

ENDLOOP(var)

• Main subroutine SquaredME now sectioned by comments,
to aid automated substitution e.g. with sed, e.g.

* BEGIN VARDECL

* END VARDECL

• Introduced data types RealType and ComplexType for
better abstraction, can e.g. be changed to different
precision.

T. Hahn, FormCalc 7 – p.19

Command-line parameters for model initialization

Extension of command-line argument parsing:

run :arg1 :arg2 ... uuuu 0,1000

The ‘:’-arguments are passed to model initialization code.

Internal routines in xsection.F accordingly have additional
parameters argv, argc.

T. Hahn, FormCalc 7 – p.20

Model Initialization through FeynHiggs

• model_fh.F uses FeynHiggs as Frontend for
FormCalc-generated code:

run :fhparameterfile :fhflags uuuu 0,1000

• FeynHiggs initializes MSSM (SM) parameters and passes
them to FormCalc code.

• No duplication of initialization code.

• Parameters consistent between Higgs-mass computation
and cross-section calculation.

• Needs FeynHiggs 2.8.1 or above.

T. Hahn, FormCalc 7 – p.21

Aiding Operator Matching

As numerical calculations are done mostly using Weyl-spinor
chains, there has been a paradigm shift for Dirac chains to
make them better suited for analytical purposes, e.g. the
extraction of Wilson coefficients.

• The FermionOrder option of CalcFeynAmp implements
Fierz methods for Dirac chains, allowing the user to force
fermion chains into any desired order. This includes the
Colour method which brings the spinors into the same
order as the external colour indices.

• The Antisymmetrize option allows the choice of
completely antisymmetrized Dirac chains, i.e.
DiracChain[−1, µ, ν] = σµν .

• The Evanescent option tracks operators before and after
Fierzing for better control of ε-dimensional terms.

T. Hahn, FormCalc 7 – p.22

Not the Cross-Section

Example: extract the Wilson coefficients for b → sγ.
tops = CreateTopologies[1, 1 -> 2]

ins = InsertFields[tops, F[4,{3}] -> {F[4,{2}], V[1]}]

vert = CalcFeynAmp[CreateFeynAmp[ins], FermionChains -> Chiral]

mat[p_Plus] := mat/@ p

mat[r_. DiracChain[s2_Spinor, om_, mu_, s1:Spinor[p1_, m1_, _]]] :=

I/(2 m1) mat[r DiracChain[sigmunu[om]]] +

2/m1 r Pair[mu, p1] DiracChain[s2, om, s1]

mat[r_. DiracChain[sigmunu[om_]], SUNT[Col1, Col2]] :=

r O7[om]/(EL MB/(16 Pi^2))

mat[r_. DiracChain[sigmunu[om_]], SUNT[Glu1, Col2, Col1]] :=

r O8[om]/(GS MB/(16 Pi^2))

coeff = Plus@@ vert //. abbr /. Mat -> mat

c7 = Coefficient[coeff, O7[6]]

c8 = Coefficient[coeff, O8[6]]

T. Hahn, FormCalc 7 – p.23

Not the Cross-Section

Using FormCalc’s output functions it is also pretty
straightforward to generate your own Fortran code:

file = OpenFortran["bsgamma.F"]

WriteString[file,

SubroutineDecl["bsgamma(C7,C8)"] <>

"\tdouble complex C7, C8\n" <>

"#include \"looptools.h\"\n"]

WriteExpr[file, {C7 -> c7, C8 -> c8}]

WriteString[file, "\tend\n"]

Close[file]

T. Hahn, FormCalc 7 – p.24

Cuba Parallelization: Design Considerations

No additional software shall be needed.

• OS functions only.

• No parallelization across the network (e.g. via MPI).

• Uses internal cores ‘only’, thus e.g. 4 or 8.

• Speed-ups not expected to be linear.

• More cores not necessarily useful.

Shall work for any integrand function.

• Requires user’s understanding of issues (e.g. global variables,
common blocks, I/O buffers).

• Re-coding effort for old code.

• Reentrancy cannot be fully controlled e.g. in Fortran.

T. Hahn, FormCalc 7 – p.25

Cuba Parallelization: Design Considerations

Parallelization should work ‘automatically.’

• No system knowledge required.

• No re-compile necessary.

• Auto-detect # of cores + load at run-time.

• User control through environment variable CUBACORES (Condor).

• Auto-parallelization only acceptable if speed-ups ‘reasonable.’

Shall be available on all platforms.

• Native Windows has no fork function.

• Cygwin API emulates fork but quite slow.

• fork is moderately ‘expensive’ even on Linux/MacOS.

• Keep fork calls minimal: ‘Spinning Threads’ method
= fork N times at entry into Cuba routine.

T. Hahn, FormCalc 7 – p.26

Cuba Parallelization: Design Considerations

Usual issues with parallel sample generation.

• How to independently seed parallel random-number generators?

• Best to generate samples on master only, distribute to workers.

• 1 Master, N workers on N -core system.

Note: Parallelization as discussed here does not cover
Mathematica, where one needs to re-define MapSample only,
e.g. by ParallelMap. (Would need to fork Mathematica
kernel, not Cuba executable, license issues etc.)

T. Hahn, FormCalc 7 – p.27

fork vs. pthread_create

• pthread_create creates additional thread in
same memory space.

• fork creates completely independent process.

• On Linux: pages not actually duplicated until written on
(‘copy-on-write’), thus no large penalty.

Must use fork for non-reentrant integrands.

T. Hahn, FormCalc 7 – p.28

Master–Worker Communication

Possible communication channels:

• file read/write,

• pipe read/write,

• socket read/write,

• shared memory (IPC).

I/O creates obvious scheduling point for kernel.
Need semaphore or similar if using shared memory only.

Used in Cuba:

• (if available:) shared memory for samples,

• socketpair read/write for control information.

T. Hahn, FormCalc 7 – p.29

Implementation

• Main sampling routine DoSample already abstracted in
Cuba 1, 2 since C/C++ and Mathematica implementations
very different.

• DoSample straightforward to parallelize on N cores:

Serial → sample n points

Parallel → send ⌈n/N⌉ points to core 1
→ send ⌈n/N⌉ points to core 2
→ . . .

• Fill fewer cores if not enough samples.

• Divonne: Parallelizing DoSample alone not satisfactory.
Speed-ups generally . 1.5.
Partitioning phase significant. Originally recursive, had
to ‘un-recurse’ algorithm first.

T. Hahn, FormCalc 7 – p.30

Inefficiencies

Assess parallelization efficiency through

speed-up =
tserial

tN -cores
ideally = N.

• Parallelization overhead = Extra time for communication,
scheduling efficiency etc.
Overhead can be estimated through tserial/t1-core < 1.

• Load levelling = Keeping cores busy. If only N − n busy,
absolute timing may be ok but N -core speed-up lousy.

• Caveat: Hyperthreading, e.g. i7 has 8 virtual, 4 real cores.

Speed-ups will obviously depend on the ‘cost’ of the
integrand: The more time a single integrand evaluation takes,
the better speed-ups can be expected to achieve.

T. Hahn, FormCalc 7 – p.31

Timing Measurements

Timing measurements delicate on multicore systems:

• System timer (even ualarm) has granularity.

• Cannot use timer interrupt directly in integrand delay,
accumulates too large errors.

• First calibrate delay loop over sufficiently long time
interval.

• Use same calibrated value per machine for all runs.

• Repeat integrations such that each measurement takes a
reasonable minimum amount of time (to minimize
measurement errors).

• Disable processes like condor_start, autonice, etc.

T. Hahn, FormCalc 7 – p.32

Cuba Comparison

Cuhre

Divonne

Suave

Vegas

εrel = 3 × 10−3

e+ e− → t̄ t γ

Number of regions

√
s/GeV

1000900800700600500400

104

103

102

101

100

Integrand evaluations

√
s/GeV

1000900800700600500400

106

105

104

103

‘Gauge’ integration problem first:

• Compute with all four routines.

• Check whether results are consistent.

• Select fastest algorithm.
T. Hahn, FormCalc 7 – p.33

Timing Results

Cuhre
Divonne

Suave
Vegas

integrand 1, delay 1000µsec

87654321

7

6

5

4

3

2

1

Cuhre
Divonne

Suave
Vegas

integrand 1, delay 10µsec

87654321

7

6

5

4

3

2

1

f1 = sinx cos y exp z

εrel = 10−4

Cuhre
Divonne

Suave
Vegas

integrand 11, delay 1000µsec

87654321

7

6

5

4

3

2

1

Cuhre
Divonne

Suave
Vegas

integrand 11, delay 10µsec

87654321

7

6

5

4

3

2

1

f11 = Θ(1− x2 − y2 − z2)

T. Hahn, FormCalc 7 – p.34

Summary

New Features in FormCalc 7: feynarts.de/formcalc

• Analytic tensor reduction in CalcFeynAmp,

• Unitarity (OPP) methods using either the Samurai or
CutTools library,

• Improved code generation,

• Command-line parameters for model initialization,

• Initialization of MSSM parameters via FeynHiggs,

• Options aiding operator matching (Fierz, antisymmetry,
evanescent operators).

Cuba: feynarts.de/cuba

• Built-in Parallelization available simply by compiling
with Cuba 3.

T. Hahn, FormCalc 7 – p.35

	Automated Diagram Evaluation
	FeynArts
	Sample CreateFeynAmp output
	Sample CreateFeynAmp output
	Sample CreateFeynAmp output
	Sample CreateFeynAmp output
	Algebraic Simplification
	FormCalc Internals
	FormCalc Output
	Abbreviations
	FormCalc 7
	Analytic Tensor Reduction
	Analytic Tensor Reduction
	Unitarity Methods
	Unitarity Methods
	Numerical Evaluation in Fortran 77
	Code generation
	Improvements in Code Generation
	Command-line parameters for model initialization
	Model Initialization through FeynHiggs
	Aiding Operator Matching
	Not the Cross-Section
	Not the Cross-Section
	Cuba Parallelization: Design Considerations
	Cuba Parallelization: Design Considerations
	Cuba Parallelization: Design Considerations
	fork vs. pthread_create
	Master--Worker Communication
	Implementation
	Inefficiencies
	Timing Measurements
	Cuba Comparison
	Timing Results
	Summary

