ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

FeynRules Status and Plans

Claude Duhr

FeynRules 2012, St. Odile 26/03/2012

Outline

- FeynRules in a nutshell.
- The status, or what has happened since FeynRules 2010
- Plans for the future.

Outline

- FeynRules in a nutshell.
- The status, or what has happened since FeynRules 2010
- Plans for the future.

• Disclaimer:

This whole meeting is supposed to be very informal, with lots of discussions... so feel free to interrupt at any time!

- FeynRules is a Mathematica package that allows to derive Feynman rules from a Lagrangian.
- Current public version: 1.6.x, available from <u>http://feynrules.phys.ucl.ac.be</u>
- The only requirements on the Lagrangian are:
 - All indices need to be contracted (Lorentz and gauge invariance)
 - ➡ Locality
 - Supported field types: spin 0, 1/2, 1, 2, ghosts & superfields

- FeynRules comes with a set of interfaces, that allow to export the Feynman rules to various matrix element generators.
 - Interfaces coming with current public version
 - ➡ CalcHep / CompHep
 - ➡ FeynArts / FormCalc
 - ➡ GoSam
 - ➡ MadGraph (4 & 5)
 - ➡ Sherpa
 - ➡ Whizard / Omega

- FeynRules comes with a set of interfaces, that allow to export the Feynman rules to various matrix element generators.
 - Interfaces coming with current public version
 - ➡ CalcHep / CompHep
 - FeynArts / FormCalc
 - ➡ GoSam
 - ➡ MadGraph (4 & 5)
 - ➡ Sherpa
 - ➡ Whizard / Omega

© C. Degrande

• The input requested form the user is twofold.

• The Model File: Definitions of particles and parameters (e.g., a quark)

F[1] ==

{ClassName -> q, SelfConjugate -> False, Indices -> {Index[Colour]}, Mass $-> \{MQ, 200\},$

Width

-> {WQ, 5} }

• The Lagrangian:

$$\mathcal{L} = -\frac{1}{4} G^a_{\mu\nu} \, G^{\mu\nu}_a + i\bar{q} \, \gamma^\mu \, D_\mu q - M_q \, \bar{q} \, q$$

I = -1/4 FS[G,mu,nu,a] FS[G,mu,nu,a] + I gbar.Ga[mu].DC[g,mu] - MQ qbar.q

• Once this information has been provided, FeynRules can be used to compute the Feynman rules for the model:

FeynmanRules[L]

 Once this information has been provided, FeynRules can be used to compute the Feynman rules for the model:

FeynmanRules[L]

Vertex 1 Particle 1 : Vector, GParticle 2 : Dirac, q^{\dagger} Particle 3 : Dirac, qVertex:

 $i \operatorname{gs} \gamma^{\mu_1}{}_{s_2,s_3} \delta_{f_2,f_3} T^{a_1}{}_{i_2,i_3}$

FeynRules 2010

FeynRules 2010

- A big fraction of the projects that brought FeynRules to the state it is in now were initiated during the last workshop:
 - ➡ Superfields in FeynRules.
 - More support for higher dimensional operators:
 higher dimensional operators in FeynArts.
 - UFO ALOHA.
 - ➡ Automated web validation platform.

[CD, Fuks]

• FeynRules 1.4.x required the Lagrangian to be written in component fields.

[CD, Fuks]

• FeynRules 1.4.x required the Lagrangian to be written in component fields.

$$\begin{split} \mathcal{L} &= \Phi^{\dagger} e^{-2gV} \Phi_{|_{\theta^{2}\bar{\theta}^{2}}} + \frac{1}{16g^{2}\tau_{\mathcal{R}}} \mathsf{Tr}(W^{\alpha}W_{\alpha})_{|_{\theta^{2}}} + \frac{1}{16g^{2}\tau_{\mathcal{R}}} \mathsf{Tr}(\bar{W}_{\dot{\alpha}}\bar{W}^{\dot{\alpha}})_{|_{\bar{\theta}^{2}}} \\ &+ W(\Phi)_{|_{\theta^{2}}} + W^{\star}(\Phi^{\dagger})_{|_{\bar{\theta}^{2}}} + \mathcal{L}_{\mathrm{soft}} \end{split}$$

[CD, Fuks]

• FeynRules 1.4.x required the Lagrangian to be written in component fields.

$$\begin{split} \mathcal{L} &= \Phi^{\dagger} e^{-2gV} \Phi_{|_{\theta^{2}\bar{\theta}^{2}}} + \frac{1}{16g^{2}\tau_{\mathcal{R}}} \mathrm{Tr}(W^{\alpha}W_{\alpha})_{|_{\theta^{2}}} + \frac{1}{16g^{2}\tau_{\mathcal{R}}} \mathrm{Tr}(\bar{W}_{\dot{\alpha}}\bar{W}^{\dot{\alpha}})_{|_{\bar{\theta}^{2}}} \\ &+ W(\Phi)_{|_{\theta^{2}}} + W^{\star}(\Phi^{\dagger})_{|_{\bar{\theta}^{2}}} + \mathcal{L}_{\mathrm{soft}} \end{split}$$

- 'Monte Carlo description':
 - Express superfields in terms of component fields.
 - Express everything in terms of 4-component fermions (beware of the Majoranas!).
 - ➡ Integrate out D and F terms.

• FeynRules 1.6.x allows to define superfields directly:

- CSF[1] == { ClassName -> ER, Chirality -> Left, Weyl -> ERw, Scalar -> ERs, QuantumNumbers -> {Y-> 1}, Indices -> {Index[GEN]} }
- The F term does not need to be defined, but is added automatically.
- Once the superfields (and their component fields) have been defined, FeynRules takes care of the rest.

Higher-dimensional operators

- Even though FeynRules 1.4.x could already compute the Feynman rules for higher-dimensional operators, they were 'useless', in the sense that they could be exported to almost no Monte Carlo code.
- Reason: Most Monte Carlo codes have internal limitations for the vertices:
 - ➡ hardcoded library of color and/or Lorentz structures.
 - Upper limit on the number of particles enter in a vertex (usually 4).
- To overcome this problem, a joint effort between the FeynRules team and the MC developers was needed!

The UFO

[Degrande, CD, Fuks, Grellscheid, Mattelaer, Reiter]

UFO = Universal FeynRules Output

- Idea: Create Python modules that can be linked to other codes and contain all the information on a given model.
- The UFO is a self-contained Python code, and not tied to a specific matrix element generator.
- The content of the FR model files, together with the vertices, is translated into a library of Python objects, that can be linked to other codes.
- By design, the UFO does not make any assumptions on Lorentz/color structures, or the number of particles.
- GoSam and MadGraph 5 use the UFO as the default model format for BSM, Herwig++ will use it in the future.

The development of the UFO goes hand in hand with the development of ALOHA.
Idea: ALOHA uses the information contained in the UFO to create the (previously-hardcoded) library of Lorentz structures for MadGraph 5 on the fly.

➡ See Olivier Mattelaer's talk.

The development of the UFO goes hand in hand with the development of ALOHA.
Idea: ALOHA uses the information contained in the UFO to create the (previously-hardcoded) library of Lorentz structures for MadGraph 5 on the fly.

See Olivier Mattelaer's talk.

• A neat application...

• A neat application... in supergravity!

• A neat application... in supergravity!

$$\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a + \lambda f^{abc} \text{Tr}(F^a_{\mu\nu} F^{\nu\rho}_b F^c_{\rho\mu})$$

Broedel and Dixon have a CSW construction for the colorordered helicity amplitudes, but had no way to check the validity of the construction.

• A neat application... in supergravity!

$$\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a + \lambda f^{abc} \text{Tr}(F^a_{\mu\nu} F^{\nu\rho}_b F^c_{\rho\mu})$$

- Broedel and Dixon have a CSW construction for the colorordered helicity amplitudes, but had no way to check the validity of the construction.
 - Solution:
 - ➡ Put it into FeynRules, and let it run for a long time...
 - Get the UFO, and put it into MadGraph 5.
 - Hack matrix.f to read out the color-ordered helicity amplitudes for individual phase space points.

V_4 = Vertex(name = 'V_4',

particles = [P.G, P.G, P.G, P.G, P.G, P.G],

color = ['f(-2,-3,-1)*f(-1,1,2)*f(3,4,-2)*f(5,6,-3)', 'f(-2,-3,-1)*f(-1,1,2)*f(3,4,-3)*f(5,6,-2)', 'f(-2,-3,-1)*f(-1,1,2)*f(3,5,-2)*f(4,6,-3)', 'f(-2,-3,-1)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2 (-2,-3,-1)*f(-1,1,2)*f(3,5,-3)*f(4,6,-2)', 'f(-2,-3,-1)*f(-1,1,2)*f(3,6,-2)*f(4,5,-3)', 'f(-2,-3,-1)*f(-1,1,2)*f(3,6,-3)*f(4,5,-2)', 'f(-2,-3,-1)*f(-1,1,3)*f(2,4,-2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)*f(-1,1,2)* (5,6,-3)', f(-2,-3,-1)*f(-1,1,3)*f(2,4,-3)*f(5,6,-2)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-2)*f(4,6,-3)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-3)*f(4,6,-2)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-3)*f(4,6,-2)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-3)*f(4,6,-2)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-2)*f(4,6,-3)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-3)*f(4,6,-2)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-2)*f(4,6,-3)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-3)*f(4,6,-2)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-2)*f(4,6,-3)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-3)*f(4,6,-2)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-2)*f(4,6,-3)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-2)*f(4,6,-2)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-2)*f(4,6,-3)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-2)*f(4,6,-3)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-2)*f(4,6,-2)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-2)*f(4,6,-3)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-2)*f(4,6,-2)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-2)*f(4,6,-3)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-2)*f(4,6,-3)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-2)*f(4,6,-3)', f(-2,-3,-1)*f(-1,1,3)*f(2,5,-2)*f(4,6,-3)', f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-*f(2,6,-2)*f(4,5,-3)', 'f(-2,-3,-1)*f(-1,1,3)*f(2,6,-3)*f(4,5,-2)', 'f(-2,-3,-1)*f(-1,1,4)*f(2,3,-2)*f(5,6,-3)', 'f(-2,-3,-1)*f(-1,1,4)*f(2,3,-3)*f(5,6,-2)', 'f (-2,-3,-1)*f(-1,1,4)*f(2,5,-2)*f(3,6,-3)', 'f(-2,-3,-1)*f(-1,1,4)*f(2,5,-3)*f(3,6,-2)', 'f(-2,-3,-1)*f(-1,1,4)*f(2,6,-2)*f(3,5,-3)', 'f(-2,-3,-1)*f(-1,1,4)*f(2,6,-3)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)*f(-1,1,4)* (3,5,-2)', f(-2,-3,-1)*f(-1,1,5)*f(2,3,-2)*f(4,6,-3)', f(-2,-3,-1)*f(-1,1,5)*f(2,3,-3)*f(4,6,-2)', f(-2,-3,-1)*f(-1,1,5)*f(2,4,-2)*f(3,6,-3)', f(-2,-3,-1)*f(-1,1,5)*f(2,3,-3)*f(4,6,-2)', f(-2,-3,-1)*f(-1,1,5)*f(2,4,-2)*f(3,6,-3)', f(-2,-3,-1)*f(-1,1,5)*f(2,3,-3)*f(4,6,-2)', f(-2,-3,-1)*f(-1,1,5)*f(2,4,-2)*f(3,6,-3)', f(-2,-3,-1)*f(-1,1,5)*f(2,3,-3)*f(4,6,-2)', f(-2,-3,-1)*f(-1,1,5)*f(2,4,-2)*f(3,6,-3)', f(-2,-3,-1)*f(-1,1,5)*f(2,3,-3)*f(4,6,-2)', f(-2,-3,-1)*f(-1,1,5)*f(2,4,-2)*f(3,6,-3)', f(-2,-3,-1)*f(-1,1,5)*f(2,3,-3)*f(4,6,-2)', f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-1,1,5)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-2,-3,-1)*f(-*f(2,4,-3)*f(3,6,-2)', 'f(-2,-3,-1)*f(-1,1,5)*f(2,6,-2)*f(3,4,-3)', 'f(-2,-3,-1)*f(-1,1,5)*f(2,6,-3)*f(3,4,-2)', 'f(-2,-3,-1)*f(-1,1,6)*f(2,3,-2)*f(4,5,-3)', 'f(-2,-3,-1)*f(-1,1,6)*f(2,3,-2)*f(4,5,-3)', 'f(-2,-3,-1)*f(-1,1,6)*f(2,3,-2)*f(4,5,-3)', 'f(-2,-3,-1)*f(-1,1,6)*f(2,3,-2)*f(-1,1,6)*f(2,3,-2)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1,1,6)*f(-1, (-2,-3,-1)*f(-1,1,6)*f(2,3,-3)*f(4,5,-2)', 'f(-2,-3,-1)*f(-1,1,6)*f(2,4,-2)*f(3,5,-3)', 'f(-2,-3,-1)*f(-1,1,6)*f(2,4,-3)*f(3,5,-2)', 'f(-2,-3,-1)*f(-1,1,6)*f(2,5,-2)*f(3,5,-3)', 'f(-2,-3,-1)*f(-1,1,6)*f(2,5,-2))', 'f(-2,-3,-1)*f(-1,1,6)*f(2,5,-2)*f(3,5,-2)*f(3,5,-2)', 'f(-2,-3,-1)*f(-1,1,6)*f(2,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2)*f(3,5,-2) (3,4,-3)', f(-2,-3,-1)*f(-1,1,6)*f(2,5,-3)*f(3,4,-2)', f(-2,-3,-1)*f(-1,2,3)*f(1,4,-2)*f(5,6,-3)', f(-2,-3,-1)*f(-1,2,3)*f(1,4,-3)*f(5,6,-2)', f(-2,-3,-1)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(1,5,-2)*f(4,6,-3)', 'f(-2,-3,-1)*f(-1,2,3)*f(1,5,-3)*f(4,6,-2)', 'f(-2,-3,-1)*f(-1,2,3)*f(1,6,-2)*f(4,5,-3)', 'f(-2,-3,-1)*f(-1,2,3)*f(1,6,-3)*f(4,5,-2)', 'f(-2,-3,-1)*f(-1,2,3)*f(1,6,-3)*f(4,5,-2)', 'f(-2,-3,-1)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)*f(-1,2,3)* (-2,-3,-1)*f(-1,2,4)*f(1,3,-2)*f(5,6,-3)', 'f(-2,-3,-1)*f(-1,2,4)*f(1,3,-3)*f(5,6,-2)', 'f(-2,-3,-1)*f(-1,2,4)*f(1,5,-2)*f(3,6,-3)', 'f(-2,-3,-1)*f(-1,2,4)*f(1,5,-3)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)*f(-1,2,4)* (3,6,-2)', 'f(-2,-3,-1)*f(-1,2,4)*f(1,6,-2)*f(3,5,-3)', 'f(-2,-3,-1)*f(-1,2,4)*f(1,6,-3)*f(3,5,-2)', 'f(-2,-3,-1)*f(-1,2,5)*f(1,3,-2)*f(4,6,-3)', 'f(-2,-3,-1)*f(-1,2,5) *f(1,3,-3)*f(4,6,-2)', 'f(-2,-3,-1)*f(-1,2,5)*f(1,4,-2)*f(3,6,-3)', 'f(-2,-3,-1)*f(-1,2,5)*f(1,4,-3)*f(3,6,-2)', 'f(-2,-3,-1)*f(-1,2,5)*f(1,6,-2)*f(3,4,-3)', 'f(-2,-3,-1)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1,2,5)*f(-1, (-2, -3, -1)*f(-1, 2, 5)*f(1, 6, -3)*f(3, 4, -2)', 'f(-2, -3, -1)*f(-1, 2, 6)*f(1, 3, -2)*f(4, 5, -3)', 'f(-2, -3, -1)*f(-1, 2, 6)*f(1, 3, -3)*f(4, 5, -2)', 'f(-2, -3, -1)*f(-1, 2, 6)*f(1, 4, -2)*f(-1, 2, 6)*f(-1, 2, 6)*(3,5,-3)', f(-2,-3,-1)*f(-1,2,6)*f(1,4,-3)*f(3,5,-2)', f(-2,-3,-1)*f(-1,2,6)*f(3,4,-3)', f(-2,-3,-1)*f(-1,2,6)*f(1,5,-3)*f(3,4,-2)', f(-2,-3,-1)*f(-1,3,4)*f(1,2,-2)*f(5,6,-3)', 'f(-2,-3,-1)*f(-1,3,4)*f(1,2,-3)*f(5,6,-2)', 'f(-2,-3,-1)*f(-1,3,4)*f(1,5,-2)*f(2,6,-3)', 'f(-2,-3,-1)*f(-1,3,4)*f(1,5,-3)*f(2,6,-2)', 'f (-2,-3,-1)*f(-1,3,4)*f(1,6,-2)*f(2,5,-3)', 'f(-2,-3,-1)*f(-1,3,4)*f(1,6,-3)*f(2,5,-2)', 'f(-2,-3,-1)*f(-1,3,5)*f(1,2,-2)*f(4,6,-3)', 'f(-2,-3,-1)*f(-1,3,5)*f(1,2,-3)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)*f(-1,3,5)* (4,6,-2)', 'f(-2,-3,-1)*f(-1,3,5)*f(1,4,-2)*f(2,6,-3)', 'f(-2,-3,-1)*f(-1,3,5)*f(1,4,-3)*f(2,6,-2)', 'f(-2,-3,-1)*f(-1,3,5)*f(1,6,-2)*f(2,4,-3)', 'f(-2,-3,-1)*f(-1,3,5) *f(1,6,-3)*f(2,4,-2)', 'f(-2,-3,-1)*f(-1,3,6)*f(1,2,-2)*f(4,5,-3)', 'f(-2,-3,-1)*f(-1,3,6)*f(1,2,-3)*f(4,5,-2)', 'f(-2,-3,-1)*f(-1,3,6)*f(1,4,-2)*f(2,5,-3)', ' (-2,-3,-1)*f(-1,3,6)*f(1,4,-3)*f(2,5,-2)', 'f(-2,-3,-1)*f(-1,3,6)*f(1,5,-2)*f(2,4,-3)', 'f(-2,-3,-1)*f(-1,3,6)*f(1,5,-3)*f(2,4,-2)', 'f(-2,-3,-1)*f(-1,4,5)*f(1,2,-2)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)*f(-1,3,6)* (3,6,-3)', f(-2,-3,-1)*f(-1,4,5)*f(1,2,-3)*f(3,6,-2)', f(-2,-3,-1)*f(-1,4,5)*f(1,3,-2)*f(2,6,-3)', f(-2,-3,-1)*f(-1,4,5)*f(1,3,-3)*f(2,6,-2)', f(-2,-3,-1)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(-1,4,5)*f(1,6,-2)*f(2,3,-3)', 'f(-2,-3,-1)*f(-1,4,5)*f(1,6,-3)*f(2,3,-2)', 'f(-2,-3,-1)*f(-1,4,6)*f(1,2,-2)*f(3,5,-3)', 'f(-2,-3,-1)*f(-1,4,6)*f(1,2,-3)*f(3,5,-2)', 'f(-2,-3,-1)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1, (-2,-3,-1)*f(-1,4,6)*f(1,3,-2)*f(2,5,-3)', 'f(-2,-3,-1)*f(-1,4,6)*f(1,3,-3)*f(2,5,-2)', 'f(-2,-3,-1)*f(-1,4,6)*f(1,5,-2)*f(2,3,-3)', 'f(-2,-3,-1)*f(-1,4,6)*f(1,5,-3)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)*f(-1,4,6)* (2,3,-2)', 'f(-2,-3,-1)*f(-1,5,6)*f(1,2,-2)*f(3,4,-3)', 'f(-2,-3,-1)*f(-1,5,6)*f(1,2,-3)*f(3,4,-2)', 'f(-2,-3,-1)*f(-1,5,6)*f(1,3,-2)*f(2,4,-3)', 'f(-2,-3,-1)*f(-1,5,6)*f(1,2,-3)*f(-1,5,6)*f(1,3,-2)*f(2,4,-3)', 'f(-2,-3,-1)*f(-1,5,6)*f(1,2,-3)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(-1,5,6)*f(*f(1,3,-3)*f(2,4,-2)', 'f(-2,-3,-1)*f(-1,5,6)*f(1,4,-2)*f(2,3,-3)', 'f(-2,-3,-1)*f(-1,5,6)*f(1,4,-3)*f(2,3,-2)'],

lorentz = [L.WVVVV16, L.WVVVV17, L.WVVVV18, L.WVVVV19, L.WVVVV20, L.WVVVV21, L.WVVVV22, L.WVVVV23, L.WVVVV24, L.WVVVV25, L.WVVVV26, L.WVVVV27, L.WVVVV28, L.WVVVV29, L.WVVVV29, L.WVVVV30],

couplings = {(5,5):C.GC_7,(4,5):C.GC_8,(3,3):C.GC_8,(2,3):C.GC_7,(11,9):C.GC_8,(10,9):C.GC_7,(7,1):C.GC_8,(6,1):C.GC_7,(17,12):C.GC_8,(16,12):C.GC_7,(13,2):C.GC_7,(21,10):C.GC_7,(20,10):C.GC_8,(19,11):C.GC_7,(18,11):C.GC_8,(33,11):C.GC_8,(32,11):C.GC_7,(31,2):C.GC_7,(30,2):C.GC_8,(39,10):C.GC_8,(38,10):C.GC_7,(37,1):C.GC_7,(36,1):C.GC_8,(51,12):C.GC_7,(50,12):C.GC_8,(49,9):C.GC_7,(48,9):C.GC_8,(63,12):C.GC_8,(62,12):C.GC_7,(61,3):C.GC_7,(60,3):C.GC_8,(71,10):C.GC_7,(70,10):C.GC_8,(67,5):C.GC_8,(66,5):C.GC_7,(75,9):C.GC_8,(74,9):C.GC_7,(73,5):C.GC_7,(72,5):C.GC_8,(63,11):C.GC_7,(82,11):C.GC_8,(79,3):C.GC_8,(74,9):C.GC_7,(73,5):C.GC_7,(72,5):C.GC_8,(83,11):C.GC_7,(82,11):C.GC_8,(79,3):C.GC_8,(74,9):C.GC_7,(15,13):C.GC_8,(14,13):C.GC_7,(27,8):C.GC_7,(26,8):C.GC_8,(78,3):C.GC_7,(24,14):C.GC_8,(35,14):C.GC_7,(41,8):C.GC_8,(40,8):C.GC_7,(45,13):C.GC_7,(44,13):C.GC_7,(22,4):C.GC_7,(26,8):C.GC_7,(26,4):C.GC_7,(56,4):C.GC_7,(56,4):C.GC_7,(56,4):C.GC_7,(56,6):C.GC

```
VVVVV42 = Lorentz(name = 'VVVVV42',
                  spins = [ 3, 3, 3, 3, 3 ],
                  structure = 'P(4,5)*Metric(1,3)*Metric(2,5) - P(1,5)*Metric(2,5)*Metric(3,4) - P(4,5)*Metric(1,2)*Metric(3,5) + P(1,5)*Metric(2,4)*Metric(3,5)')
VVVVV43 = Lorentz(name = 'VVVVV43',
                  spins = [ 3, 3, 3, 3, 3 ],
                  structure = 'P(5,1)*Metric(1,4)*Metric(2,3) - P(3,1)*Metric(1,4)*Metric(2,5) - P(5,1)*Metric(1,2)*Metric(3,4) + P(3,1)*Metric(1,2)*Metric(4,5)')
VVVVV44 = Lorentz(name = 'VVVVV44',
                  spins = [ 3, 3, 3, 3, 3],
                  structure = 'P(4,1)*Metric(1,5)*Metric(2,3) - P(3,1)*Metric(1,5)*Metric(2,4) - P(4,1)*Metric(1,2)*Metric(3,5) + P(3,1)*Metric(1,2)*Metric(4,5)')
VVVVV45 = Lorentz(name = 'VVVVV45',
                  spins = [ 3, 3, 3, 3, 3 ],
                  structure = 'P(5,2)*Metric(1,3)*Metric(2,4) - P(3,2)*Metric(1,5)*Metric(2,4) - P(5,2)*Metric(1,2)*Metric(3,4) + P(3,2)*Metric(1,2)*Metric(4,5)')
VVVVV46 = Lorentz(name = 'VVVVV46',
                  spins = [ 3, 3, 3, 3, 3 ],
                  structure = 'P(4,2)*Metric(1,3)*Metric(2,5) - P(3,2)*Metric(1,4)*Metric(2,5) - P(4,2)*Metric(1,2)*Metric(3,5) + P(3,2)*Metric(1,2)*Metric(4,5)')
VVVVV47 = Lorentz(name = 'VVVVV47',
                  spins = [ 3, 3, 3, 3, 3 ],
                  structure = 'P(4,1)*Metric(1,5)*Metric(2,3) - P(4,1)*Metric(1,3)*Metric(2,5) - P(2,1)*Metric(1,5)*Metric(3,4) + P(2,1)*Metric(1,3)*Metric(4,5)')
VVVVV48 = Lorentz(name = 'VVVVV48',
                  spins = [3, 3, 3, 3, 3],
                  structure = 'P(5,1)*Metric(1,4)*Metric(2,3) - P(5,1)*Metric(1,3)*Metric(2,4) - P(2,1)*Metric(1,4)*Metric(3,5) + P(2,1)*Metric(1,3)*Metric(4,5)')
VVVVV49 = Lorentz(name = 'VVVVV49',
                  spins = [ 3, 3, 3, 3, 3 ],
                  structure = 'P(5,3)*Metric(1,3)*Metric(2,4) - P(5,3)*Metric(1,2)*Metric(3,4) + P(2,3)*Metric(1,5)*Metric(3,4) - P(2,3)*Metric(1,3)*Metric(4,5)')
VVVVV50 = Lorentz(name = 'VVVVV50',
                  spins = [ 3, 3, 3, 3, 3 ],
                  structure = 'P(4,3)*Metric(1,3)*Metric(2,5) - P(4,3)*Metric(1,2)*Metric(3,5) + P(2,3)*Metric(1,4)*Metric(3,5) - P(2,3)*Metric(1,3)*Metric(4,5)')
VVVVV51 = Lorentz(name = 'VVVVV51',
                  spins = [ 3, 3, 3, 3, 3 ],
                  structure = 'P(3,4)*Metric(1,4)*Metric(2,5) - P(2,4)*Metric(1,4)*Metric(3,5) - P(3,4)*Metric(1,2)*Metric(4,5) + P(2,4)*Metric(1,3)*Metric(4,5)')
```

```
VVVVV42 = Lorentz(name = 'VVVVV42',
                 spins = [ 3, 3, 3, 3, 3 ],
                 structure = 'P(4,5)*Metric(1,3)*Metric(2,5) - P(1,5)*Metric(2,5)*Metric(3,4) - P(4,5)*Metric(1,2)*Metric(3,5) + P(1,5)*Metric(2,4)*Metric(3,5)')
VVVVV43 = Lorentz(name = 'VVVVV43',
                 spins = [ 3, 3, 3, 3, 3 ],
                 structure = 'P(5,1)*Metric(1,4)*Metric(2,3) - P(3,1)*Metric(1,4)*Metric(2,5) - P(5,1)*Metric(1,2)*Metric(3,4) + P(3,1)*Metric(1,2)*Metric(4,5)')
VVVVV44 = Lorentz(name = 'VVVVV44',
                 spins = [ 3, 3, 3, 3, 3 ],
                 structure = 'P(4,1)*Metric(1,5)*Metric(2,3) - P(3,1)*Metric(1,5)*Metric(2,4) - P(4,1)*Metric(1,2)*Metric(3,5) + P(3,1)*Metric(1,2)*Metric(4,5)')
VVVVV45 = Lorentz(name = 'VVVVV45'.
                 spins = [ 3, 3, 3, 3, 3 ],
                 structure = 'P(5,2)*Metric(1,3)*Metric(2,4) - P(3,2)*Metric(1,5)*Metric(2,4) - P(5,2)*Metric(1,2)*Metric(3,4) + P(3,2)*Metric(1,2)*Metric(4,5)')
                                         All Helicity amplitudes
VVVVV46 = Lorentz(name = 'VVVVV46'
                 spins = [ 3, 3, 3]
                                                                                                                  c(3,5) + P(3,2)*Metric(1,2)*Metric(4.5)')
                 structure = 'P(4,
www.47 = Lorentz(name = 'WWW47', agreed out of the box with the
                 structure = 'P(4,
                                                                                                                    (3,4) + P(2,1)*Metric(1,3)*Metric(4,5)')
                                                         W construction!
VVVVV48 = Lorentz(name = 'VVVVV48'
                 spins = [ 3, 3, 3
                 structure = P(5,1)
                                                                                                          4)*Metric(3,5) + P(2,1)*Metric(1,3)*Metric(4,5)')
VVVVV49 = Lorentz(name = 'VVVVV49',
                 spins = [ 3, 3, 3, 3, 3 ],
                 structure = 'P(5,3)*Metric(1,3)*Metric(2,4) - P(5,3)*Metric(1,2)*Metric(3,4) + P(2,3)*Metric(1,5)*Metric(3,4) - P(2,3)*Metric(1,3)*Metric(4,5)')
VVVVV50 = Lorentz(name = 'VVVVV50',
                 spins = [ 3, 3, 3, 3, 3 ],
                 structure = 'P(4,3)*Metric(1,3)*Metric(2,5) - P(4,3)*Metric(1,2)*Metric(3,5) + P(2,3)*Metric(1,4)*Metric(3,5) - P(2,3)*Metric(1,3)*Metric(4,5)')
VVVVV51 = Lorentz(name = 'VVVVV51',
                 spins = [ 3, 3, 3, 3, 3 ],
                 structure = 'P(3,4)*Metric(1,4)*Metric(2,5) - P(2,4)*Metric(1,4)*Metric(3,5) - P(3,4)*Metric(1,2)*Metric(4,5) + P(2,4)*Metric(1,3)*Metric(4,5)')
```

- [Degrande]
- Similar improvements were made to the FeynArts interface.
 FeynArts has a similar structure to MadGraph/Helas:

- [Degrande] Similar improvements were made to the FeynArts interface.
- FeynArts has a similar structure to MadGraph/Helas:

- [Degrande]
- Similar improvements were made to the FeynArts interface.
 FeynArts has a similar structure to MadGraph/Helas:

[Degrande]
Similar improvements were made to the FeynArts interface.
FeynArts has a similar structure to MadGraph/Helas:

- [Degrande]
- Similar improvements were made to the FeynArts interface.
 FeynArts has a similar structure to MadGraph/Helas:
- The new FeynArts interface brings the interface to the same level as the UFO interface!

Validation of new models

- FeynRules does not only provide the power to develop and validate new models, but also to validate them to an unprecedented level!
- A given model can be output to more than one matrix element generator, and their results can be compared
 - Different conventions
 - Different gauges
 - ➡ Different ways of handling large cancellations.
- This procedure can easily be automatized!

Web validation

000		Claude Duhr's Models		0
(1) - C × (1) (1) (1) (1)	/127.0.0.1:8080/author		😭 🔻 🚷 👔 👔 ipad delete app wait	٩)
CP3 FYMA Webmail FeynRules MadGraph Hotmail	SPIRES LEO IPPP IP3 We	ebmail		
Claude Duhr's Models +				
	(Janda Duhula Mad	ala	
		laude Dunr's Mod	eis	
	Remove	Standard Model		
		New Model		
Fastio				

		27.0.0.1.9090/author/arvit/adal	Sa catitada unfo	
		27.0.0.1:8080/author/newModel		
FYMA Webmail FeynR	ules MadGraph Hotmail	SPIRES LEO IPPP IP3 Webmail		_
New Model	+			
		New Model		
		Claude Duhr		
Mo	del Files	Restriction Files	Parameter Files	
	Durchsuchen)	(Add) a restriction file	(Add) a parameter file	
(Add) and	other model file			
	Lagrangian :	Test Process : ,	→ ,	
		Exclude 4 Scalar Vertices		
		FeynRules Version		
		⊖Current ⊙Development		
		Upload Model		

Standard Model : Validation						
() • () • ()	X 👚 🔲 http://127.0.0.1:8080/author/r	newValidati 🏫 🔻 🤇 📢 Google 🖉	٩)			
CP3 FYMA Webmail	FeynRules MadGraph Hotmail SPIRES LEO IPPP IP	23 Webmail				
Standard Mo	del : Validation +		Ξ.			

Standard Model Claude Duhr

Validation Name :

R. File	P. File	СН	FA	HW	MG4	MG5	SH	WO1	WO2
\odot		~~	✔?	v ?	~~	✔?	v ?	~~	~~
Massless.rst		~~	✔?	v ?	~~	✔?	✔?	~~	~~
O DiagonalCKM.rst		~~	v ?	v ?	~~	✔?	v ?	~~	~~

2→2 Processes

F	ield Type		Indices		Charges					
Field Type	Require	Require Not	Index	Require	Require Not	Charge	Require Require Not			
Scalar :	0 🛟	0 🛟	Colour :	0 🛟	0 🛟	LeptonNumber :	0 \$ 0 \$			
Fermion :	0 \$	0 🛟	Gluon :	0 🗘	0 🛟	Q :	0 \$ 0 \$			
Vector :	0 \$	0 🛟				GhostNumber :	0 \$ 0 \$			
Spin 2 :	0 \$	0 ‡								
			G	enerate Processe	25					

]	Cest_ Standa Cla	Val_9 ard Mo ude Duhr	SM odel					
		СН	FA ✔ ?	HW ✔ ?	MG4	MG5 ✔ ?	SH	WO1	WO2			
Field Type					Indices			Charges				
	Type	Requi	ire No	Γ Co	Index	Require	Not	Charge LeptonNurr	Requi	re Not		
	Fermion	2	0	Gh	1001	0	0	O	0	0		
	Vector	2	0	On	aon	Ū	v	≺ GhostNumł	ber 0	0		
	Spin 2	0	0							-		
	✓ CalcH	EP (Feynn	nan gauge)		🗹 Mae	dGraph4	2	Whizard1 (Fey	ynman gauge))		
	☑ CalcH	EP (unitar	y gauge)		🗆 Mad	Graph5		Whizard1 (uni	itary gauge)			
	🖂 FeynAr	ts			🗆 Sher	pa	\mathbf{A}	Whizard2 (Fey	ynman gauge))		
	🗌 Herwig			Che	eck All	Che	eck None	Whizard2 (uni	itary gauge)			
					Stoc	k Model	s					
				SM_M	IG (MG	:u)		s	SM_CH (C	CH:f)		
		1	~	param	1 card.da	t.part	6	1 🗸	SM.	.tgz		

000		Standard M	lodel : Test	_Val_SM						C	∋
	() (htt	p://127.0.0.1:8080/	/author/vali	dation?v 🏠	•	Google				Q	5
CP3 FYMA Webmail FeynRules	MadGraph Hotn	nail SPIRES LEO	IPPP IP3 V	Vebmail							
Standard Model : Test_Val_	sм +										-
ve , ve~ \rightarrow Z , Z 730.0	182.5 0.49452	0.49452 0.49384	0.494604	0.494622	0.494547	0.494668	0.49351	0.4945	•	0.17%	6
ve , ve~ \rightarrow W+ , W- 639.0	159.75 1.0603	1.0603 1.0604	1.06053	1.0604	1.06035	1.06073	1.0665	1.0603	•	0.51%	
ve, ve~ \rightarrow G, G 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	Ш
ve , vm~ \rightarrow A , A 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	П
ve , vm~ \rightarrow A , Z 365.0	91.25 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	C
ve , vm~ $\rightarrow~Z$, Z 730.0	182.5 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	
ve , vm~ \rightarrow W+ , W- 639.0	159.75 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	
ve , vm~ \rightarrow G , G 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	L
ve , vt~ \rightarrow A , A 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	Ш
ve , vt~ \rightarrow A , Z 365.0	91.25 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	Ш
ve , vt~ \rightarrow Z , Z 730.0	182.5 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
ve , vt~ \rightarrow W+ , W- 639.0	159.75 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
ve , vt~ \rightarrow G , G 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0%	
ve , e+ \rightarrow A , W+ 319.0	79.75 2.2219	1.9846 1.9809	1.98496	1.98478	1.98454	1.98491	1.9756	1.9845	×	10.56%	
ve , e+ \rightarrow Z , W+ 684.0	171.0 0.71578	0.54663 0.54717	0.54657	0.546756	0.54641	0.546869	0.54864	0.54661	×	26.53%	
ve , m+ \rightarrow A , W+ 320.0	80.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
ve , m+ \rightarrow Z , W+ 684.0	171.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
ve, tt+ \rightarrow A, W+ 326.0	81.5 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
ve, tt+ \rightarrow Z, W+ 691.0	172.75 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
$vm, vm \rightarrow A, A 200.0$	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
$vm, vm \rightarrow A, Z$ 365.0	91.25 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
$vm, vm \rightarrow Z, Z$ 730.0	182.5 0.49452	0.49452 0.49384	0.494505	0.494545	0.494559	0.494447	0.49351	0.4945	٠	0.17%	
vm , $vm \rightarrow W+$, $W-$ 639.0	159.75 1.0603	1.0603 1.0604	1.0604	1.06033	1.06027	1.06006	1.0665	1.0603	•	0.52%	
vm , $vm \rightarrow G$, G 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	×.	0%	
vm , $vt \rightarrow A$, A 200.0	50.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0%	
vm , vt~ \rightarrow A , Z 365.0	91.25 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0		0%	Ų
vm , $vt \rightarrow Z$, Z 730.0	182.5 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	ľ.	0%	*
Um ut W/I W 630.0	150.75 0.0	00 00	0.0	0.0	0.0	0.0		0.0	~		1 T

1

A look into the future...

• We have now the possibility to

easily implement SUSY models.
 deal with higher-dimensional operators in a successful way.

• We have now the possibility to

easily implement SUSY models.
 deal with higher-dimensional operators in a successful way.

• The tree level story is basically closed!

- We have now the possibility to
 - easily implement SUSY models.
 deal with higher-dimensional operators in a successful way.
- The tree level story is basically closed!
- In other words, many things have already been achieved...

- We have now the possibility to
 - easily implement SUSY models.
 deal with higher-dimensional operators in a successful way.
- The tree level story is basically closed!
- In other words, many things have already been achieved...
- ... but there are many more left to do!

• Where can we improve...?

Model file GUI

- A GUI is being developed that allows to generate a FeynRules model file automatically
 - ➡ Select your fields.
 - ➡ Select your symmetry groups (gauged or global).
 - Most general Lagrangian (up to dimension 6) is generated automatically.

Model file GUI

- A GUI is being developed that allows to generate a FeynRules model file automatically
 - ➡ Select your fields.
 - Select your symmetry groups (gauged or global).
 - Most general Lagrangian (up to dimension 6) is generated automatically.
- Works for both SUSY and non-SUSY theories.

Model file GUI

- A GUI is being developed that allows to generate a FeynRules model file automatically
 - ➡ Select your fields.
 - Select your symmetry groups (gauged or global).
 - Most general Lagrangian (up to dimension 6) is generated automatically.
- Works for both SUSY and non-SUSY theories.
- A sneak preview will be given by Neil on Thursday.

Mass diagonalization

- Even after the Lagrangian has been obtained, FeynRules cannot diagonalize the mass matrix automatically.
- FeynRules should be able to
 - → Get the mass matrix.
 - ➡ Diagonalize it numerically.
 - Put the numerical values back into FeynRules / an updated parameter card.
 - ➡ See Adam Alloul's talk.

• This was on the to-do list of FeynRules 2010 already.

Decay rates and branching ratios

- Another missing piece for a complete model file are the widths of the particles.
- Idea: Compute decays (analytically) in Mathematica:
 - → Use FeynRules to generate vertices.
 - ► Compute (1-to-2) decays analytically.
 - Put the numerical values back into FeynRules / an updated parameter card.
- The branching ratios can be output in a LHA style decay table.
- Interfacing to Python / UFO to compute branching ratios numerically on the fly in the UFO?

Spin 3/2 fields

- The development version of FeynRules allows to implement models including spin 3/2 particles.
- Implementation basically ready:
 - ➡ Feynman rules can be computed.
 - Interfaces to CalcHep and MadGraph 5 (UFO) have been updated.
- Currently under testing against independent MadGraph 4 implementation. [Hagiwara, Mawatari, Takaesu]
- What about spin 3/2 in FeynArts..?

• The development version of FeynRules allows to extract the one-loop renormalization group equations for generic SUSY models.

- The development version of FeynRules allows to extract the one-loop renormalization group equations for generic SUSY models.
- Starting from the superspace action, the RGE's are simply obtained via

RGE[LSoft, SuperW]

- The development version of FeynRules allows to extract the one-loop renormalization group equations for generic SUSY models.
- Starting from the superspace action, the RGE's are simply obtained via

RGE[LSoft, SuperW]

$$\begin{aligned} \frac{\mathrm{d}\mu}{\mathrm{d}t} &= \mu \left[-\frac{3g'^2}{80\pi^2} - \frac{3g_w^2}{16\pi^2} + \frac{3}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{d}^{\dagger}} \mathbf{y}^{\mathbf{d}} \right] + \frac{3}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{u}^{\dagger}} \mathbf{y}^{\mathbf{u}} \right] + \frac{1}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{e}^{\dagger}} \mathbf{y}^{\mathbf{e}} \right] \right] \\ \frac{\mathrm{d}b}{\mathrm{d}t} &= b \left[-\frac{3g'^2}{80\pi^2} - \frac{3g_w^2}{16\pi^2} + \frac{3}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{d}^{\dagger}} \mathbf{y}^{\mathbf{d}} \right] + \frac{3}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{u}^{\dagger}} \mathbf{y}^{\mathbf{u}} \right] + \frac{1}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{e}^{\dagger}} \mathbf{y}^{\mathbf{e}} \right] \right] \\ &+ \mu \left[\frac{3g'^2 M_1}{40\pi^2} + \frac{3g_w^2 M_2}{8\pi^2} + \frac{3}{8\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{d}^{\dagger}} \mathbf{T}^{\mathbf{d}} \right] + \frac{3}{8\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{u}^{\dagger}} \mathbf{T}^{\mathbf{u}} \right] + \frac{1}{8\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{e}^{\dagger}} \mathbf{T}^{\mathbf{e}} \right] \right] \end{aligned}$$

• The development version of FeynRules allows to extract the one-loop renormalization group equations for generic SUSY models.

RGE[LSoft, SuperW]

See Adam Alloul's talk.

• In parallel, an interface to SuSpect 3 is being developed that allows to input the RGE's obtained by FeynRules into SuSpect to solve them numerically.

WriteSuSpectOutput[LSoft, SuperW]

Towards NLO

- We are slowly getting to the point that we have automated tools for NLO computations:
 - ➡ Blackhat
 - ➡ GoSam
 - ➡ Helac-NLO
 - ➡ MadLoops
 - ➡ Rocket
- Most of these codes only do SM processes so far.
- Reason: Beyond LO, we do not only need tree-level
 Feynman rules, but also counterterms, etc.
- Future releases of FeynRules will allow to compute also these quantities!

Extraction of counterterms

• The (not public) development version of FeynRules already allows to extract counterterm Feynman rules.

ExtractCounterterms[l[s,f],{aS,1}] $\blacktriangleright I_{sf} \rightarrow I_{sf} + \frac{\alpha_s}{4\pi} \left[(\delta Z_{II}^{L(1)})_{ff'} (P_L)_{ss'} + (\delta Z_{II}^{R(1)})_{ff'} (P_R)_{ss'} \right] I_{s'f'}$

ExtractCounterterms[ydo,{{aS,2},{aEW,1}}] $\blacktriangleright y_d \rightarrow y_d + \frac{\alpha_s}{2\pi} \delta y_d^{(1,0)} + \frac{\alpha}{2\pi} \delta y_d^{(0,1)} + \frac{\alpha_s^2}{4\pi^2} \delta y_d^{(2,0)} + \frac{\alpha_s \alpha}{4\pi^2} \delta y_d^{(1,1)} + \frac{\alpha_s^2 \alpha}{8\pi^3} \delta y_d^{(2,1)}$

- At the moment, the values of the counterterms for the independent parameters and the fields must still be given by hand.
- In addition, this should also provide the counterterms for FeynArts.
- Still to do: How to get the values for the 'independent' counterterms.

R2 terms

- All the automatized NLO codes are based, in one way or another, on some unitary-based approach.
- Unitarity, however, does not provide everything, but misses the rational pieces (without cuts).
- Some can be obtained, others (R2) need a different approach.
- R2 terms can be obtained via effective tree-level Feynman $= -\frac{ig^4 N_{col}}{96\pi^2} \sum_{P(234)} \left\{ \left[\frac{\delta_{a_1 a_2} \delta_{a_3 a_4} + \delta_{a_1 a_3} \delta_{a_4 a_2} + \delta_{a_1 a_4} \delta_{a_2 a_3}}{N_{col}} \right] \right\}$ rules. $\mu_{1,a_1} \varphi_{\alpha}$

$$+4Tr(t^{a_1}t^{a_3}t^{a_2}t^{a_4}+t^{a_1}t^{a_4}t^{a_2}t^{a_3})(3+\lambda_{HV})$$

$$-Tr(\{t^{a_1}t^{a_2}\}\{t^{a_3}t^{a_4}\})(5+2\lambda_{HV})\right]g_{\mu_1\mu_2}g_{\mu_3\mu_4}$$

$$+12\frac{N_f}{N_{col}}Tr(t^{a_1}t^{a_2}t^{a_3}t^{a_4})\left(\frac{5}{3}g_{\mu_1\mu_3}g_{\mu_2\mu_4}-g_{\mu_1\mu_2}g_{\mu_3\mu_4}-g_{\mu_2\mu_3}g_{\mu_1\mu_4}\right)\right\}$$

[Draggiotis, Garzelli, Papadopoulos, Pittau; Garzelli, Malamos, Pittau]

UFO@NLO

• Both GoSam and MadLoops use the UFO as the BSM model format.

→ Need to extend the existing UFO format to NLO.

• Some steps were already taken

```
V_R24G = CTVertex(name = 'V_R24G',
              particles = [ P.G, P.G, P.G, P.G ],
              color = [ 'Tr(1,2)*Tr(3,4)' , 'Tr(1,3)*Tr(2,4)' , 'Tr(1,4)*Tr(2,3)', \
                        'd(-1,1,2)*d(-1,3,4)', 'd(-1,1,3)*d(-1,2,4)', 'd(-1,1,4)*d(-1,2,3)'],
              lorentz = [ L.R2_4G_1234, L.R2_4G_1324, L.R2_4G_1423 ],
              loop_particles = [ [[P.G]], [[P.u], [P.d], [P.c], [P.s]] ],
              couplings = \{(0,0,0): C.GC_4GR2_Gluon_delta5, (0,1,0): C.GC_4GR2_Gluon_delta7, (0,2,0): C.GC_4GR2_Gluon_delta7, \land
                           (1,0,0):C.GC_4GR2_Gluon_delta7,(1,1,0):C.GC_4GR2_Gluon_delta5,(1,2,0):C.GC_4GR2_Gluon_delta7, \
                           (2,0,0):C.GC_4GR2_Gluon_delta7,(2,1,0):C.GC_4GR2_Gluon_delta7,(2,2,0):C.GC_4GR2_Gluon_delta5, \
                           (3,0,0):C.GC_4GR2_4Struct,(3,1,0):C.GC_4GR2_2Struct,(3,2,0):C.GC_4GR2_2Struct, \
                           (4,0,0):C.GC_4GR2_2Struct,(4,1,0):C.GC_4GR2_4Struct,(4,2,0):C.GC_4GR2_2Struct, \
                           (5,0,0):C.GC_4GR2_2Struct,(5,1,0):C.GC_4GR2_2Struct,(5,2,0):C.GC_4GR2_4Struct , \
                           (0,0,1):C.GC_4GR2_Fermion_delta11,(0,1,1):C.GC_4GR2_Fermion_delta5,(0,2,1):C.GC_4GR2_Fermion_delta5, \
                           (1,0,1):C.GC_4GR2_Fermion_delta5,(1,1,1):C.GC_4GR2_Fermion_delta11,(1,2,1):C.GC_4GR2_Fermion_delta5, \
                           (2,0,1):C.GC_4GR2_Fermion_delta5,(2,1,1):C.GC_4GR2_Fermion_delta5,(2,2,1):C.GC_4GR2_Fermion_delta11, \
                           (3,0,1):C.GC_4GR2_11Struct,(3,1,1):C.GC_4GR2_5Struct,(3,2,1):C.GC_4GR2_5Struct, \
                           (4,0,1):C.GC_4GR2_5Struct,(4,1,1):C.GC_4GR2_11Struct,(4,2,1):C.GC_4GR2_5Struct, \
                           (5,0,1):C.GC_4GR2_5Struct,(5,1,1):C.GC_4GR2_5Struct,(5,2,1):C.GC_4GR2_11Struct },
              type = 'R2')
```


Conclusion

- Many milestones have been achieved since the last FeynRules workshop in 2010:
 - ➡ Superfields
 - ➡ UFO & ALOHA
 - ➡ Support of color sextets.
 - ➡ Web validation:
- New developments that are in the pipeline:
 - ➡ Spin 3/2
 - ➡ Susy RGE's
 - ➡ Interface to SuSpect
 - → Web validation platform.
 - Moving towards NLO

Enjoy the workshop!

