Status of the Model Builder GUI

Nicholas Setzer

University of Granada

March 30, 2012

with Neil Christensen, Daniel Salmon, Christian Speckner, and Stefanus FeynRules Workshop, 2012

Outline

- Introduction
- Core
 - Algebra
 - Compact Lie Algebra
 - Fields
 - Model
- Interface
- Summary

	<i>SU</i> (3) ^c	$SU(2)_L$	$U(1)_{Y}$	
Q_L	3	2	$+\frac{1}{3}$	$(\frac{1}{2},0)$
u_R	3	1	$+\frac{4}{3}$	$(0,\frac{1}{2})$
d_R	3	1	$-\frac{2}{3}$	$(0,\frac{1}{2})$
ℓ_{L}	1	2	-1	$(\frac{1}{2}, 0)$
e_R	1	1	+2	$(0,\frac{1}{2})$
ν_R	1	1	0	$(0,\frac{1}{2})$
Φ	1	2	+1	(0,0)

	<i>SU</i> (3) ^c	<i>SU</i> (2) _L	<i>U</i> (1) _Y	
Q_L	3	2	$+\frac{1}{3}$	$(\frac{1}{2},0)$
u_R	3	1	$+\frac{4}{3}$	$(0,\frac{1}{2})$
d_R	3	1	$-\frac{2}{3}$	$(0,\frac{1}{2})$
ℓ_L	1	2	-1	$(\frac{1}{2}, 0)$
e_R	1	1	+2	$(0,\frac{1}{2})$
ν_R	1	1	0	$(0,\frac{1}{2})$
Φ	1	2	+1	(0,0)

	$SU(3)^c$	$SU(2)_L$	<i>U</i> (1) _Y	
Q_L	3	2	$+\frac{1}{3}$	$(\frac{1}{2}, 0)$
u_R	3	1	$+\frac{4}{3}$	$(0,\frac{1}{2})$
d_R	3	1	$-\frac{2}{3}$	$(0,\frac{1}{2})$
ℓ_{L}	1	2	–1	$(\frac{1}{2}, 0)$
e_R	1	1	+2	$(0, \frac{1}{2})$
ν_R	1	1	0	$(0,\frac{1}{2})$
Ф	1	2	+1	(0,0)

	<i>SU</i> (3) ^c	$SU(2)_L$	$U(1)_Y$	
Q_L	3	2	$+\frac{1}{3}$	$(\frac{1}{2},0)$
u_R	3	1	$+\frac{4}{3}$	$(0,\frac{1}{2})$
d_R	3	1	$-\frac{2}{3}$	$(0,\frac{1}{2})$
ℓ_{L}	1	2	-1	$(\frac{1}{2}, 0)$
e_R	1	1	+2	$(0,\frac{1}{2})$
ν_R	1	1	0	$(0,\frac{1}{2})$
Ф	1	2	+1	(0,0)

$$\mathcal{L} = \mathcal{L}_{\mathsf{KE}} + \left(y_u \overline{Q}_L \Phi^* u_R + y_d \overline{Q}_L \Phi d_R + y_L \overline{\ell}_L \Phi e_R + y_{
u} \overline{\ell}_L \Phi^*
u_R + \mathsf{h.c.} \right) + m^2 |\Phi|^2 - \frac{1}{2} \lambda |\Phi|^4$$

- Some couplings determined by experiment
- Scan over the rest

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{KE}} \\ &+ \left(\mathbf{\textit{y}}_{\textit{u}} \overline{\textit{Q}}_{\textit{L}} \Phi^* \textit{u}_{\textit{R}} + \mathbf{\textit{y}}_{\textit{d}} \overline{\textit{Q}}_{\textit{L}} \Phi \textit{d}_{\textit{R}} + \mathbf{\textit{y}}_{\textit{L}} \overline{\ell}_{\textit{L}} \Phi \textit{e}_{\textit{R}} + \mathbf{\textit{y}}_{\textit{\nu}} \overline{\ell}_{\textit{L}} \Phi^* \nu_{\textit{R}} + \text{h.c.} \right) \\ &+ \textit{m}^2 |\Phi|^2 - \frac{1}{2} \lambda |\Phi|^4 \end{split}$$

- Some couplings determined by experiment
- Scan over the rest

Structure

- Written in C++
- Core
 - Workhorse: handles all computations
 - Written as a library
- GUI
 - Interactive portion
 - Written as a web application (browser based)

Structure

- Written in C++
- Core
 - Workhorse: handles all computations
 - Written as a library
- GUI
 - Interactive portion
 - Written as a web application (browser based)

Structure

- Written in C++
- Core
 - Workhorse: handles all computations
 - Written as a library
- GUI
 - Interactive portion
 - Written as a web application (browser based)

Goals (for First Release)

- Symmetries
 - Compact Lie Groups
 - Discrete Symmtery Z_n
- Fields
 - Scalars
 - Fermions
 - Vectors
 - Super
- Functionality
 - Automatic Lagrangian Generation
 - Read and Save Model
 - Output to FeynRules

Goals (for First Release)

- Symmetries
 - Compact Lie Groups
 - Discrete Symmtery Z_n
- Fields
 - Scalars
 - Fermions
 - Vectors
 - Super
- Functionality
 - Automatic Lagrangian Generation
 - Read and Save Model
 - Output to FeynRules

Dialog to enter and edit Symbol in Main Window

Dialog to enter and edit Symbol in Main Window

✓ Display in Main WindowMenu option

Outline

- Introduction
- Core
 - Algebra
 - Compact Lie Algebra
 - Fields
 - Model
- Interface
- Summary

Core Components: Algebra

Algebra: Finished and Tested

Understands any fraction of the form

$$\sqrt{n}\,\frac{p}{q}$$
 $q,n\in\mathbb{N}^+,p\in\mathbb{Z}$

- Add/Subtract
- Multiply/Divide
- Sums of fraction
 - Add/Substract
 - Multiply/Divide by single fraction
- Output
 - to MathML
 - to Mathematica

Core Components: Compact Lie Algebras

Compact Lie Algebras: Finished and Tested

- Understands any Compact Lie Algebra, U(1), and \mathbb{Z}_n A_n , B_n , C_n , D_n , G_2 , F_4 , E_6 , E_7 , E_8 , U(1), \mathbb{Z}_n
 - Arbitrary Representations
 - All Generators of any Representations
- Product States
 - Gives Singlets

9/15

NS (UGR) Model Builder GUI March 30, 2012

Core Components: Fields

Fields: Mostly Finished and Tested

- Understands Spin 0, ¹/₂, and 1 fields (fundamental objects)
- Understands Superfields
 - Implemented as a container
 - Chiral Superfields stored as collection of spin-0 and spin-1/2
- Output
 - to MathML
 - NEED to FeynRules

Core Components: Model

Model: Mostly Finished and Partly Tested

- Understands any direct product group (of Known Groups)
 - Local or Global (\mathbb{Z}_n only global)
- Lagrangian
 - Completely and automatically generated given fields
 - Handles all operators up to dimension 6
 - For SUSY Generates Kahler potential and Superpotential
 - Output to MathML
- Needs
 - Save/Read Model XML file
 - Write complet FeynRules .fr file

Outline

- Introduction
- Core
 - Algebra
 - Compact Lie Algebra
 - Fields
 - Model
- Interface
- Summary

Interface

Graphical Interface: Working, but not finished or tested

- Uses wt (c++ library for web applications)
 - Run on local machine
 - Run on remote server
- Interacts with core code...
- Better to just show

Outline

- Introduction
- Core
 - Algebra
 - Compact Lie Algebra
 - Fields
 - Model
- Interface
- Summary

Summary

- Two Parts
 - Core
 - C++ Library
 - Nearly Complete for First Release
 - Interface
 - Broswer-based
 - In a usable state (but not by users!)
- Still Need
 - Save/Read Model
 - Output FeynRules .fr file
 - Fine-tuning and testing of Interface
- Audience wow'd by demo!

