Propagation of galactic cosmic rays

G. Bernard Thesis advisor : R. Taillet

October 13, 2011

Introduction

Figure: Proton Flux as observed by PAMELA Colaboration. arxiv:1103.4055,Cosmic rays anisotropy as observed by IceCube. arxiv:1110.207

Table of contents

Anisotropy of cosmic rays

Experiments

4 Large scale anisotropy

- Anisotropy induced by source distribution
- Local bubble
- Real sources

Galaxy model

Cylindrical symmetry, large disk

Diffusion Model

Magnetic Halo : It keeps charged particles inside the galaxy

2 components :

- Regular one (around 2µgauss)
- Turbulent component

 $\rightarrow \mathsf{Decomposition}$ of the turbulence in power spectra \rightarrow multi size turbulences

Turbulence \sim Larmor Radius

Slightly turbulent

On each little turbulence : the particle is slightly deflected in a random direction.

\rightarrow Diffusion process

Defined by a diffusion coefficient $K = K_0 \beta R^{\delta}$.

Stationary diffusion equation :

$$\frac{\partial^2 N(r,z)}{\partial z^2} + \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial}{\partial r}) N(r,z) - \frac{V_c}{K} \frac{\partial N(r,z)}{\partial z} = \left(-\frac{q_0(r,z)}{K} + \frac{h\Gamma}{K} N(r,z) + 2\frac{V_c}{K} N(r,z) \right) \delta(z) \quad (1)$$

Anisotropy of cosmic rays

Origins of anisotropy

- Compton-getting effect : motion of the solar system into the galaxy
- Heliosphere effects
- Large scale anisotropy

Anisotropy

$\begin{array}{l} \label{eq:previous works:} \mathbf{Previous works:}\\ \delta_{dip} \text{ dipole anisotropy}\\ I \text{ flux of cosmic rays in a given direction on earth} \end{array}$

Definitions of anisotropy in the literature

$$I = < I > (1 + \delta_{dip} \cos \theta) \quad \text{or} \quad \delta_{dip} = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}} \quad \text{or} \quad \delta_{dip} = \frac{3K}{c} \frac{1}{N} \left| \frac{dN}{dr} \right|$$
(2)

The anisotropy holds 2 informations :

- The absolute value of δ_{dip} : constrain K0 and δ_s
- The direction of the maximum (the phase) : constrain the model of anisotropy

Experiments

Principle of the experiments :

- Scanning each declination band in the sky
- Harmonic decomposition of each dec band signal

\rightarrow One loses the correlation between each dec band.

Figure: Signal in equatorial coordinates - Signal as viewed by experiments

different models of anisotropy

- Distribution of sources
- Local bubble
- Real sources

Anisotropy induced by source distribution Local bubble Real sources

Large scale anisotropy

Thanks to the diffusion model we can build our own maps of anistropy Anisotropy induced by source distribution in the galaxy

Figure: Signal using pulsar distribution - Signal detected by milagro

 \rightarrow The positions of the maximum don't match !

Anisotropy induced by source distribution Local bubble Real sources

constraining K0 and δ_s

Using the results of milagro ($\delta=2.49\pm0.09)$ one can manage to constrain K0 and $\delta_{\bm{s}}$

Figure: Chi2 test computed with milagro data and with a pulsar distribution - and a SNR distribution

 \rightarrow very sensitive to the source distribution \rightarrow cannot fit the energy dependance of anisotropy

Anisotropy induced by source distribution Local bubble Real sources

Local bubble

Solar system is located in a low density zone Possibility of two diffusion coefficients

 \rightarrow Hard to conclude, possible reason for anisotropies but introduction of a new parameter

Anisotropy induced by source distribution Local bubble Real sources

Anisotropy is highly sensitive to local effects. We may be sensitive to time dependant effects.

We consider now time dependant solutions of diffusion equation.

 \rightarrow Sources are now considered as beeing pointlike in space and time

Sources are choosen in a catalog of SNR and Pulsar for close ones (distance < 2kpc) and randomly for other ones

Anisotropy induced by source distribution Local bubble Real sources

Real sources

We choose sources from a Pulsar and a SNR catalog in a 2kpc radius

Figure: Anisotropie àt 6TeV

Anisotropy induced by source distribution Local bubble Real sources

Real sources

Comparison with milagro measurements

 \rightarrow The maximum and minimum begin to fit

Anisotropy induced by source distribution Local bubble Real sources

Real sources

We compute the anisotropy for two different parameters set

 \rightarrow We can manage to have a good agreement with measurements

Proton Flux

 Aim : Try to explain the anomaly observed by <code>PAMELA CREAM</code> and <code>ATIC</code> in the proton flux

Ideas : As we are choosing sources from a catalog and randomly, this should induce a variance in the flux, so that a slight change in the flux is not forbidden by the model

Figure: Proton Flux as observed by PAMELA Colaboration. arxiv:1103.4055

Conclusion and prospects

- $\bullet\,$ The model can constrain δ_{s} but still need to check the energy dependance
- We need to do the calculations with Heliums and electrons
- Influence of the local bubble
- Influence of sources witch are not pointlike in time
- Need to think of the limit of the models (mean free path > distance of the sources)