The right-handed sneutrino Cold Dark Matter

Jonathan Da Silva

Laboratoire d'Annecy-le-Vieux de Physique Théorique Beginning of 2nd year of PhD, Annecy-le-Vieux G. Bélanger, J. Da Silva and A. Pukhov, arXiv:1110.2414v1 [hep-ph]

Outline

- Motivations
 - Dark Matter and supersymmetry
 - Some candidates
- 2 The model
 - Contents
 - Constraints
- CDM interactions
 - WIMP annihilation
 - Scattering on nucleons
- Some results
 - Characteristics of the global scan
 - Output
- 5 Conclusion and perspectives

Motivations

- Motivations
 - Dark Matter and supersymmetry
 - Some candidates
- The mode
 - Contents
 - Constraints
- CDM interactions
 - WIMP annihilation
 - Scattering on nucleons
- Some results
 - Characteristics of the global scan
 - Output
- 5 Conclusion and perspectives

Solving Dark Matter (DM) issue :

CMB, rotation curves, Bullet cluster, ...

 \Rightarrow need to introduce weakly interacting, stable particles

Solving Dark Matter (DM) issue :

⇒ I considered massive particles (around GeV), Cold Dark Matter

Solving Dark Matter (DM) issue :

- ⇒ I considered massive particles (around GeV), Cold Dark Matter
- Interests on Supersymmetry (SUSY) :

Hierarchy problem, unification of the couplings, ...

⇒ also addition of new particles interacting weakly with standard particles

Solving Dark Matter (DM) issue :

- CMB, rotation curves, Bullet cluster, ...
- ⇒ need to introduce weakly interacting, stable particles

⇒ I considered massive particles (around GeV), Cold Dark Matter

Interests on Supersymmetry (SUSY) :

Hierarchy problem, unification of the couplings, ...

⇒ also addition of new particles interacting weakly with standard particles

⇒ Dark Matter candidates in supersymmetric models

- Motivations
 - Dark Matter and supersymmetry
 - Some candidates
- The mode
 - Contents
 - Constraints
- CDM interactions
 - WIMP annihilation
 - Scattering on nucleons
- Some results
 - Characteristics of the global scan
 - Output
- 5 Conclusion and perspectives

- 2 WIMPs candidates in the MSSM :
 - ► Lightest neutralino : a lot of studies ⇒ good DM candidate
 - ▶ LH sneutrino : too high coupling with $Z^0 \Rightarrow$ don't satisfy experimental constraints on spin independent direct detection \Rightarrow bad DM candidate

- 2 WIMPs candidates in the MSSM :
 - ▶ Lightest neutralino : a lot of studies ⇒ good DM candidate
 - ▶ LH sneutrino : too high coupling with $Z^0 \Rightarrow$ don't satisfy experimental constraints on spin independent direct detection \Rightarrow bad DM candidate
- Others SUSY candidates to DM :
 - Gravitino, axino, ...
 - SUSY partner of the RH neutrino : coupled with other particles, mixed with LH sneutrino. sterile. ...

- 2 WIMPs candidates in the MSSM :
 - ► Lightest neutralino : a lot of studies ⇒ good DM candidate
 - ▶ LH sneutrino : too high coupling with $Z^0 \Rightarrow$ don't satisfy experimental constraints on spin independent direct detection \Rightarrow bad DM candidate
- Others SUSY candidates to DM :
 - Gravitino, axino, ...
 - SUSY partner of the RH neutrino : coupled with other particles, mixed with LH sneutrino, sterile. ...
 - ⇒ I focused on a RH sneutrino supersymmetric particle of the a Dirac RH neutrino

- 2 WIMPs candidates in the MSSM :
 - ► Lightest neutralino : a lot of studies ⇒ good DM candidate
 - LH sneutrino : too high coupling with $Z^0\Rightarrow$ don't satisfy experimental constraints on spin independent direct detection \Rightarrow bad DM candidate
- Others SUSY candidates to DM :
 - Gravitino, axino, ...
 - SUSY partner of the RH neutrino : coupled with other particles, mixed with LH sneutrino, sterile, ...
 - ⇒ I focused on a RH sneutrino supersymmetric particle of the a Dirac RH neutrino
 - ⇒ This candidate couples to new vector, scalar field, adding a new abelian gauge group

The model

- Motivations
 - Dark Matter and supersymmetry
 - Some candidates
- The model
 - Contents
 - Constraints
- CDM interactions
 - WIMP annihilation
 - Scattering on nucleons
- Some results
 - Characteristics of the global scan
 - Output
- 5 Conclusion and perspectives

- Symmetry group : $SU(3)_c \times SU(2)_L \times U(1)_Y \times U'(1)$ Coupling constants associated : g_3 , g_2 , g_Y and $g_1' = g_1 = \sqrt{\frac{5}{3}}g_Y$
- U'(1) stem from E_6 model
- ⇒ Model implemented at tree-level in Unitary and Feynman gauge in LanHEP

- Symmetry group : $SU(3)_c \times SU(2)_L \times U(1)_Y \times U'(1)$ Coupling constants associated : g_3 , g_2 , g_Y and $g_1' = g_1 = \sqrt{\frac{5}{3}}g_Y$
- U'(1) stem from E_6 model
- ⇒ Model implemented at tree-level in Unitary and Feynman gauge in LanHEP

Some differences with the MSSM:

 $lackbox{ }$ Gauge sector : Physical abelian gauge bosons : Z_1 and Z_2 , mixing of the SM and Z'

- Symmetry group : $SU(3)_c \times SU(2)_L \times U(1)_Y \times U'(1)$ Coupling constants associated : g_3 , g_2 , g_Y and $g_1' = g_1 = \sqrt{\frac{5}{3}}g_Y$
- U'(1) stem from E_6 model
- ⇒ Model implemented at tree-level in Unitary and Feynman gauge in LanHEP

Some differences with the MSSM:

- Gauge sector : Physical abelian gauge bosons : Z_1 and Z_2 , mixing of the Z^0 of the SM and Z^\prime
- Higgs sector : 1 CP odd Higgs A^0 , 5 CP even Higgs : h^{\pm} , h_1 , h_2 and h_3 singlet-like Higgs (h_2 or h_3) mass near Z_2 mass including pure UMSSM terms + radiative corrections $\Rightarrow m_{h_1}$ above LEP limits

- Symmetry group : $SU(3)_c \times SU(2)_L \times U(1)_Y \times U'(1)$ Coupling constants associated : g_3 , g_2 , g_Y and $g_1' = g_1 = \sqrt{\frac{5}{3}}g_Y$
- U'(1) stem from E_6 model
- ⇒ Model implemented at tree-level in Unitary and Feynman gauge in LanHEP

Some differences with the MSSM:

- Gauge sector : Physical abelian gauge bosons : Z_1 and Z_2 , mixing of the Z^0 of the SM and Z^\prime
- Higgs sector : 1 CP odd Higgs A^0 , 5 CP even Higgs : h^\pm , h_1 , h_2 and h_3 singlet-like Higgs (h_2 or h_3) mass near Z_2 mass including pure UMSSM terms + radiative corrections $\Rightarrow m_{h_1}$ above LEP limits
- Gauginos sector : 6 neutralinos in the basis $(\widetilde{B}, \widetilde{W}^3, \widetilde{H}_d^0, \widetilde{H}_u^0, \widetilde{S}, \widetilde{B}')$

Relevant free parameters : $M_{\tilde{\nu}_B}$, μ , A_{λ} , M_{Z_2} , θ_{E_6} , α_Z , M_1 , M'_1 . Soft terms at 2 TeV

- Motivations
 - Dark Matter and supersymmetry
 - Some candidates
- The model
 - Contents
 - Constraints
- CDM interactions
 - WIMP annihilation
 - Scattering on nucleons
- Some results
 - Characteristics of the global scan
 - Output
- 5 Conclusion and perspectives

On our CDM candidate:

- Relic density at 3σ with $\Omega_{WIMP} h^2 = 0.1123 \pm 0.0035$
- Spin independent direct detection cross section

On our CDM candidate:

- Relic density at 3σ with $\Omega_{WIMP} h^2 = 0.1123 \pm 0.0035$
- Spin independent direct detection cross section

On the model in general:

ullet Higgs mass constraints from LEP and LHC : 114.4 GeV $< m_{h_1} <$ 144 GeV

On our CDM candidate:

- Relic density at 3σ with $\Omega_{WIMP} h^2 = 0.1123 \pm 0.0035$
- Spin independent direct detection cross section

On the model in general :

- ullet Higgs mass constraints from LEP and LHC : 114.4 GeV $< m_{h_1} <$ 144 GeV
- New Z boson mass constraints from ATLAS :

Q' choice	Q_{ψ}	Q_N	Q_{η}	Q_I	Q_S	Q_{χ}
M_{Z_2} (TeV)	1.49	1.52	1.54	1.56	1.60	1.64

• Z^0 properties $\Rightarrow \alpha_Z \leq 10^{-3}$

On our CDM candidate:

- Relic density at 3σ with $\Omega_{WIMP} h^2 = 0.1123 \pm 0.0035$
- Spin independent direct detection cross section

On the model in general :

- ullet Higgs mass constraints from LEP and LHC : 114.4 GeV $< m_{h_1} <$ 144 GeV
- New Z boson mass constraints from ATLAS :

ſ	Q' choice	Q_{ψ}	Q_N	Q_{η}	Q_I	Q_S	Q_{χ}
ſ	M_{Z_2} (TeV)	1.49	1.52	1.54	1.56	1.60	1.64

- Z^0 properties $\Rightarrow \alpha_Z \leq 10^{-3}$
- LEP constraints on sparticles masses implemented in the micrOMEGAs code

On our CDM candidate:

- Relic density at 3σ with $\Omega_{WIMP} h^2 = 0.1123 \pm 0.0035$
- Spin independent direct detection cross section

On the model in general:

- ullet Higgs mass constraints from LEP and LHC : 114.4 GeV $< m_{h_1} <$ 144 GeV
- New Z boson mass constraints from ATLAS :

Q' choice	Q_{ψ}	Q_N	Q_{η}	Q_I	Q_S	Q_{χ}
M_{Z_2} (TeV)	1.49	1.52	1.54	1.56	1.60	1.64

- Z^0 properties $\Rightarrow \alpha_Z \lesssim 10^{-3}$
- LEP constraints on sparticles masses implemented in the micrOMEGAs code
- B mesons physics constraints: ΔM_{d,s} mass differences (code adapted from a NMSSMTools routine)

CDM interactions

- Motivations
 - Dark Matter and supersymmetry
 - Some candidates
- The mode
 - Contents
 - Constraints
- CDM interactions
 - WIMP annihilation
 - Scattering on nucleons
- Some results
 - Characteristics of the global scan
 - Output
- 5 Conclusion and perspectives

Parameter space regions with $\Omega_{\it WIMP}\,h^2 \approx 0.1 \Rightarrow$ need to increase the annihilation cross section :

Parameter space regions with $\Omega_{\it WIMP} \, h^2 \approx 0.1 \Rightarrow$ need to increase the annihilation cross section :

• WIMP mass near $m_{h_1}/2$:

Parameter space regions with $\Omega_{\it WIMP} \, h^2 \approx 0.1 \Rightarrow$ need to increase the annihilation cross section :

• WIMP mass near $m_{h_1}/2$:

• WIMP mass near $M_{Z_2}/2$ (also $m_{h_i}/2$):

Parameter space regions with $\Omega_{WIMP}\,h^2pprox 0.1\Rightarrow$ need to increase the annihilation cross section :

- WIMP mass near $m_{h_1}/2$:
 - $\tilde{\nu}_R$ $\tilde{\nu}_R^*$ h_1

• WIMP mass near $M_{Z_2}/2$ (also $m_{h_i}/2$):

• WIMP mass near $m_{h_i}/2$ or above W pair threshold :

Parameter space regions with $\Omega_{WIMP}\,h^2pprox 0.1\Rightarrow$ need to increase the annihilation cross section :

- WIMP mass near $m_{h_1}/2$:
 - $\tilde{\nu}_R$

• WIMP mass near $M_{Z_2}/2$ (also $m_{h_i}/2$) :

• WIMP mass near $m_{h_i}/2$ or above W pair threshold :

- $\tilde{\nu}_R$ $\tilde{\nu}_R^*$ h_1 h_1
- Coannihilation processes (mainly higgsino-like) :

- Motivations
 - Dark Matter and supersymmetry
 - Some candidates
- The mode
 - Contents
 - Constraints
- CDM interactions
 - WIMP annihilation
 - Scattering on nucleons
- Some results
 - Characteristics of the global scan
 - Output
- 5 Conclusion and perspectives

lacktriangle Mainly abelian gauge bosons contribution, h_1 for LSP mass $\lesssim 200$ GeV

lacktriangle Mainly abelian gauge bosons contribution, h_1 for LSP mass $\lesssim 200$ GeV

 \Rightarrow for some U'(1) models we can have a good suppression of the gauge boson or/and Higgs part :

• Mainly abelian gauge bosons contribution, h_1 for LSP mass $\lesssim 200$ GeV

 \Rightarrow for some U'(1) models we can have a good suppression of the gauge boson or/and Higgs part :

⇒ for other models, huge constraints on the parameter space appear :

Some results

- Motivations
 - Dark Matter and supersymmetry
 - Some candidates
- The mode
 - Contents
 - Constraints
- CDM interactions
 - WIMP annihilation
 - Scattering on nucleons
- Some results
 - Characteristics of the global scan
 - Output
- 5 Conclusion and perspectives

Characteristics of the global scan

Fixed parameters				Free parameters			
Soft terms				Name	Domain of variation		
m_{Q_i}	2 TeV	m_{L_i}	2 TeV	$M_{ ilde{ u}_R}$	[0, 1.5] TeV		
$m_{\bar{u}_i}$	2 TeV	$m_{\bar{d}_i}$	2 TeV	M_{Z_2}	[1.3, 3] TeV		
$m_{\bar{e}_i}$	2 TeV	$m_{ar{ u}_i}$	2 TeV	μ	[0.1, 2] TeV		
$i \in \{1, 2, 3\}, j \in \{1, 2\}$			1,2}	A_{λ}	[0, 2] TeV		
Trilinear couplings $+ M_K$			+ <i>M</i> _K	θ_{E_6}	$[-\pi/2, \pi/2]$ rad		
A_t	1 TeV	A_b	0 TeV	α_Z	$[-3.10^{-3}, 3.10^{-3}]$ rad		
A_c	0 TeV	A_s	0 TeV	M_1	[0.1, 2] TeV		
A_u	0 TeV	A_d	0 TeV	M_1'	[0.1, 2] TeV		
A_I	0 TeV	M_K	1 eV	$M_2 = 2M_1$ et $M_3 = 6M_1$			

Output

- - Dark Matter and supersymmetry
 - Some candidates
- - Contents
 - Constraints
- - WIMP annihilation
 - Scattering on nucleons
- Some results
 - Characteristics of the global scan
 - Output

Interesting WIMP mass from 50 GeV to TeV-scale , for following processes :

- \bullet h_1 resonance
- Z₂/singlet-like Higgs resonance
- Coannihilation with neutralinos, charginos (a few with sfermions)
- Annihilation into W pairs through Higgs exchange

Interesting WIMP mass from 50 GeV to TeV-scale , for following processes :

- \bullet h_1 resonance
- Z₂/singlet-like Higgs resonance
- Coannihilation with neutralinos, charginos (a few with sfermions)
- Annihilation into W pairs through Higgs exchange

Interesting WIMP mass from 50 GeV to TeV-scale , for following processes :

- h₁ resonance
- Z_2 /singlet-like Higgs resonance
- Coannihilation with neutralinos, charginos (a few with sfermions)
- Annihilation into W pairs through Higgs exchange

Lower is $|\theta_{E_6}|$, higher are Z_2 processes in direct detection cross section \Rightarrow huge constraint

Large SUSY corrections proportional to $rac{1}{t_{eta}^4} \Rightarrow$ small values of t_{eta} very constrained by $\Delta M_{
m s}$:

- Motivations
 - Dark Matter and supersymmetry
 - Some candidates
- 2 The mode
 - Contents
 - Constraints
- CDM interactions
 - WIMP annihilation
 - Scattering on nucleons
- Some results
 - Characteristics of the global scan
 - Output
- 5 Conclusion and perspectives

RH sneutrino is a viable dark matter candidate

it respects experimental limits in the case of some processes :

- Resonance (h_1 , Z_2 and singlet-like Higgs)
- Coannihilation (neutralinos, charginos, others sfermions)
- Annihilation into W pairs generally with exchange of h₁
- Direct detection experiments strongly constrain the model as well as ΔM_s

RH sneutrino is a viable dark matter candidate

it respects experimental limits in the case of some processes :

- ▶ Resonance (h_1 , Z_2 and singlet-like Higgs)
- Coannihilation (neutralinos, charginos, others sfermions)
- Annihilation into W pairs generally with exchange of h₁
- Direct detection experiments strongly constrain the model as well as ΔM_s

- This model could be also tested with indirect detection, other flavour physics observables. ...
- More careful study of the UMSSM Higgs sector in preparation
- Others projects in my Explora DOC exchange program in Durham like LHC limits in the NMSSM, ...

RH sneutrino is a viable dark matter candidate

it respects experimental limits in the case of some processes :

- Resonance $(h_1, Z_2 \text{ and singlet-like Higgs})$
- ► Coannihilation (neutralinos, charginos, others sfermions)
- Annihilation into W pairs generally with exchange of h₁
- Direct detection experiments strongly constrain the model as well as ΔM_s

- This model could be also tested with indirect detection, other flavour physics observables. ...
- More careful study of the UMSSM Higgs sector in preparation
- Others projects in my Explora DOC exchange program in Durham like LHC limits in the NMSSM, ...

Thanks for your attention!

BACKUP

UMSSM fields

Chiral supermultiplets						
Supermultiplets		spin 0	spin 1/2	$SU(3)_c$, $SU(2)_L$, $U(1)_Y$, $U'(1)$		
squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$(u_L d_L)$	$(3, 2, \frac{1}{6}, Q'_Q)$		
(3 families)	ū		\bar{u}_R	$(\bar{3}, 1, -\frac{2}{3}, Q'_{\mu})$		
	ā	\widetilde{u}_R^* \widetilde{d}_R^*	\bar{d}_R	$(\bar{\bf 3},{\bf 1},\frac{1}{3},{\bf Q}_d')$		
sleptons, leptons	L	$(\widetilde{\nu}_L \ \widetilde{e}_L)$	$(\nu_L e_L)$	$(1, 2, -\frac{1}{2}, Q'_{L})$		
(3 families)	$ar{ u}$	$\widetilde{ u}_{R}^{*}$	$ar{ u}_R$	$(1,\ 1,\ 0,\ Q_{\bar{ u}}')$		
	ē	\widetilde{e}_R^*	\bar{e}_R	$(1, 1, \frac{1}{6}, Q'_e)$		
Higgs, higgsinos	H_u	$(H_u^+ \ H_u^0)$	$(\widetilde{H}_{u}^{+} \ \widetilde{H}_{u}^{0})$	$(1, 2, \frac{1}{2}, Q'_{H_u})$		
	H_d	$(H_d^0 H_d^-)$	$(\widetilde{H}_d^0 \widetilde{H}_d^-)$	$(1, 2, -\frac{1}{2}, Q'_{H_d})$		
	5	S	ŝ	$(1, 1, 0, Q'_S)$		

Vector supermultiplets					
Supermultiplets	spin 1/2	spin 1	$SU(3)_c$, $SU(2)_L$, $U(1)_Y$, $U'(1)$		
gluino, gluon	\widetilde{g}	g	(8, 1, 0, 0)		
winos, W bosons	$\widetilde{W}^{\pm} \widetilde{W}^3$	$W^{\pm} W^3$	(1, 3, 0, 0)		
bino, B boson	\widetilde{B}	В	(1, 1, 0, 0)		
bino', B' boson	$\widetilde{B'}$	B'	(1, 1, 0, 0)		

Some new lagrangian terms

Superpotential :

$$\begin{split} W_{MSSM} = & \bar{u}y_uQH_u - \bar{d}y_dQH_d - \bar{e}y_eLH_d + \mu H_uH_d \\ W_{UMSSM} = & W_{MSSM}(\mu = 0) + \lambda SH_uH_d + \bar{\nu}y_\nu LH_u \end{split}$$

Soft supersymmetry breaking :

$$\begin{split} \mathcal{L}_{soft}^{MSSM} &= -\frac{1}{2} (M_3 \widetilde{g} \widetilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} + \mathrm{c.c.}) \\ &- (\widetilde{u}_R^* a_u \widetilde{Q} H_u - \widetilde{d}_R^* a_d \widetilde{Q} H_d - \widetilde{e}_R^* a_e \widetilde{L} H_d + \mathrm{c.c.}) \\ &- \widetilde{Q}^\dagger m_Q^2 \widetilde{Q} - \widetilde{L}^\dagger m_L^2 \widetilde{L} - \widetilde{u}_R^* m_{\tilde{e}}^2 \widetilde{u}_R - \widetilde{d}_R^* m_d^2 \widetilde{d}_R - \widetilde{e}_R^* m_{\tilde{e}}^2 \widetilde{e}_R \\ &- m_{H_u}^2 H_u^\dagger H_u - m_{H_d}^2 H_d^\dagger H_d - (b H_u H_d + \mathrm{c.c.}) \\ \mathcal{L}_{soft}^{UMSSM} &= \mathcal{L}_{soft}^{MSSM} (b = 0) - \left(\frac{1}{2} M_1' \widetilde{B'} \widetilde{B'} + M_K \widetilde{B} \widetilde{B'} + \widetilde{\nu}_R^* a_\nu \widetilde{L} H_u + \mathrm{c.c.}\right) \\ &- \widetilde{\nu}_R^* m_{\tilde{\nu}}^2 \widetilde{\nu}_R - (\lambda A_\lambda S H_u H_d + \mathrm{c.c.}) - m_S^2 S^* S \end{split}$$

LanHEP, A. Semenov, arXiv:0805.0555v1 [hep-ph]

Reason of constrained t_{β}

Knowing that

$$\Delta^2 = rac{g_1'\sqrt{{g'}^2+g_2^2}}{2}v^2(Q_2's_eta^2-Q_1'c_eta^2),$$

$$oxed{c_eta^2 = rac{1}{Q_1' + Q_2'} \left(rac{\sin 2lpha_{ZZ'} (M_{Z_1}^2 - M_{Z_2}^2)}{v^2 g_1' \sqrt{g'^2 + g_2^2}} + Q_2'
ight).}$$

Higgs masses

$$\begin{split} m_{A0}^2 &= \frac{\lambda A_{\lambda} \sqrt{2}}{\sin 2\phi} \, v + \Delta_{EA} & \tan \phi = \frac{v \sin 2\beta}{2v_s} \\ m_{H\pm}^2 &= \frac{\lambda A_{\lambda} \sqrt{2}}{\sin 2\beta} \, v_s - \frac{\lambda^2}{2} \, v^2 + \frac{g_2^2}{2} \, v^2 + \Delta_{\pm} & \tan \beta = \frac{v_u}{v_d} \\ M_{CPeven}^2 &: \\ \left(\mathcal{M}_+^0\right)_{11} &= \left[\frac{\left(g'^2 + g_2^2\right)^2}{4} + Q_1'^2 g_1'^2 \right] \left(v c_{\beta}\right)^2 + \frac{\lambda A_{\lambda} t_{\beta} v_s}{\sqrt{2}} + \Delta_{11} \\ \left(\mathcal{M}_+^0\right)_{12} &= - \left[\frac{\left(g'^2 + g_2^2\right)^2}{4} - \lambda^2 - Q_1' Q_2' g_1'^2 \right] v^2 s_{\beta} c_{\beta} - \frac{\lambda A_{\lambda} v_s}{\sqrt{2}} + \Delta_{12} \\ \left(\mathcal{M}_+^0\right)_{13} &= \left[\lambda^2 + Q_1' Q_2' g_{1}'^2 \right] v c_{\beta} v_s - \frac{\lambda A_{\lambda} v s_{\beta}}{\sqrt{2}} + \Delta_{13} \\ \left(\mathcal{M}_+^0\right)_{22} &= \left[\frac{\left(g'^2 + g_2^2\right)^2}{4} + Q_2'^2 g_1'^2 \right] \left(v s_{\beta}\right)^2 + \frac{\lambda A_{\lambda} v_s}{t_{\beta} \sqrt{2}} + \Delta_{22} \\ \left(\mathcal{M}_+^0\right)_{23} &= \left[\lambda^2 + Q_2' Q_3' g_1'^2 \right] v s_{\beta} v_s - \frac{\lambda A_{\lambda} v c_{\beta}}{\sqrt{2}} + \Delta_{23} \\ \left(\mathcal{M}_+^0\right)_{33} &= Q_3'^2 g_1'^2 v_s^2 + \frac{\lambda A_{\lambda} v^2 s_{\beta} c_{\beta}}{v_s \sqrt{2}} + \Delta_{33} \end{split}$$

Vernon Barger, Paul Langacker, Hye-Sung Lee and Gabe Shaughnessy, arXiv:hep-ph/0603247v3

Direct detection constraint

Abelian gauge boson contribution to direct detection :

$$\begin{split} \sigma_{\bar{\nu}_RN}^{Z_1,Z_2} &= \frac{\mu_{\bar{\nu}_RN}^2}{\pi} (g_1'Q_{\bar{\nu}}')^2 [(y(1-4s_W^2)+y')Z+(-y+2y')(A-Z)]^2 \\ \text{with } y &= \frac{g'\sin\alpha_Z\cos\alpha_Z}{4\sin\theta_W} \left(\frac{1}{M_{Z_2}^2}-\frac{1}{M_{Z_1}^2}\right), \ y' &= -\frac{g_1'}{2} \frac{Q_V'^d}{Q_V'^d} \left(\frac{\sin^2\alpha_Z}{M_{Z_1}^2}+\frac{\cos^2\alpha_Z}{M_{Z_2}^2}\right) \end{split}$$

 \Rightarrow stringent constraints for small $|\theta_{E_6}|$ because of $Q_V^{'d}$ term

Coannihilation with sfermions

Sparticles sector:

$$M_{\tilde{f}}^2 = \begin{pmatrix} m_{\text{soft}}^2 + m_f^2 + M_{Z^0}^2 \cos 2\beta (l_f^3 - e_f \sin^2 \theta_W) + \Delta_f & m_f (A_f - \mu(t_\beta)^{-2l_f^3}) \\ m_f (A_f - \mu(t_\beta)^{-2l_f^3}) & m_{\text{soft}}^2 + M_{Z^0}^2 \cos 2\beta (l_f^3 - e_{\tilde{f}} \sin^2 \theta_W) + m_f^2 + \Delta_{\tilde{f}} \end{pmatrix}$$

where $\Delta_f=\frac{1}{2}g_1'^2Q_f'(Q_{H_d}'v_d^2+Q_{H_u}'v_u^2+Q_S'v_s^2)\Rightarrow$ Coannihilations :

 $heta_{E_6} > 0$: generally $ilde{t_1}$

 $\theta_{E_6} < 0$: generally RH down sqarks