Supersymmetry in astrophysics and at colliders

G. Drieu La Rochelle

LAPTh

06/10/2011

GDLR Susy in astrophysics and at colliders

► < Ξ > .

э

Supersymmetry : alternative to the Standard Model

- fundamental issue : hierarchy problem
- experimental outcome : a dark matter candidate

▶ < ⊒ >

э.

Supersymmetry : alternative to the Standard Model

- fundamental issue : hierarchy problem
- experimental outcome : a dark matter candidate

Plenty of models (and parameters)

▶ < ⊒ >

э

Supersymmetry : alternative to the Standard Model

- fundamental issue : hierarchy problem
- experimental outcome : a dark matter candidate

Plenty of models (and parameters)

Plenty of measurements (flavor, superpartners)

Main difficulties are

- Computing predictions for experiments in one model
- Assessing the reach of general susy in one measurement

▶ < ∃ >

Main difficulties are

- Computing predictions for experiments in one model
- Assessing the reach of general susy in one measurement

This is an heavy task **Research status**

- contributions from a large community since a few decades
- But things remains to be done
- My aim : adding a bit of insight on those two subjects

▶ < ∃ >

・ロト・四ト・ヨト・ヨー うへの

- Flavor physics
- Superpartners searches
- Relic density
- Higgses searches
- Precision test

One of the most stringent

accuracy of the % (WMAP 7-year + Planck)

GDLR Susy in astrophysics and at colliders

► < Ξ >

э.

m

GDLR Susy in astrophysics and at colliders

Ξ.

Existing codes (micrOmegas, DarkSUSY, SuperISO, ...)

- Automated (with different cosmological models)
- Suitable for any SUSY model
- Fast (suitable for susy scans)

m

- ₹ 🖬 🕨

Existing codes (micrOmegas, DarkSUSY, SuperISO, ...)

- Automated (with different cosmological models)
- Suitable for any SUSY model
- Fast (suitable for susy scans)

So, is it a Yes?

m

- ₹ ₹ >

Existing codes (micrOmegas, DarkSUSY, SuperISO, ...)

- Automated (with different cosmological models)
- Suitable for any SUSY model
- Fast (suitable for susy scans)

So, is it a Yes?

m

But we need to match with the % accuracy in

- Cosmological scenario
- the particles cross-sections

- ₹ ₹ >

Existing codes (micrOmegas, DarkSUSY, SuperISO, ...)

- Automated (with different cosmological models)
- Suitable for any SUSY model
- Fast (suitable for susy scans)

So, is it a Yes?

m

But we need to match with the % accuracy in

- Cosmological scenario
- the particles cross-sections

This is hampered by radiatives corrections!

- ₹ 🖬 🕨

GDLR Susy in astrophysics and at colliders

*ロ * * @ * * 注 * * 注 *

- Rescuing the light Higgs with $M_h > 115$ GeV.
- Hence we would expect $\frac{\Delta\sigma}{\sigma} \sim 10\%$.

∃ \$\mathcal{O}\$

► < Ξ ►</p>

- Rescuing the light Higgs with $M_h > 115$ GeV.
- Hence we would expect $\frac{\Delta\sigma}{\sigma} \sim 10\%$.

Tree-level is not enough.

- Need to go to one-loop computations.
- Some points could be lost/gained.

- ₹ 🖬 🕨

- Rescuing the light Higgs with $M_h > 115$ GeV.
- Hence we would expect $\frac{\Delta\sigma}{\sigma} \sim 10\%$.

- Rescuing the light Higgs with $M_h > 115$ GeV.
- Hence we would expect $\frac{\Delta\sigma}{\sigma} \sim 10\%$.

Tree-level is not enough.

- Need to go to one-loc
- Some points could be

What is in the loop?

GDLR Susy in astrophysics and at colliders

三 わへで

<ロ > < 回 > < 回 > < 回 > < 回 > 、

What is in the loop?

- Automated tools are quite efficient
 - FeynArts/FormCalc, Grace, SloopS
- The renormalisation part is well understood
 - We can simply treat all particles On-Shell, as in the Standard Model

- It is a process-by-process method, to compute $\Omega.$ Whereas the tree-level is computed all at once.
- The parameter space grows to the full MSSM prameter space for many processes, since sfermions jump in the loops.
- Enhances drastically the number of diagram to be computed
 - From 6 at tree-level to more than 1000 at the one-loop level.

- Automated tools are quite efficient
 - FeynArts/FormCalc, Grace, SloopS
- The renormalisation part is well understood
 - We can simply treat all particles On-Shell, as in the Standard Model

- It is a process-by-process method, to compute $\Omega.$ Whereas the tree-level is computed all at once.
- The parameter space grows to the full MSSM prameter space for many processes, since sfermions jump in the loops.
- Enhances drastically the number of diagram to be computed
 - From 6 at tree-level to more than 1000 at the one-loop level.

- Automated tools are quite efficient
 - FeynArts/FormCalc, Grace, SloopS
- The renormalisation part is well understood
 - ► We can simply treat all particles On-Shell, as in the Standard Model

- It is a process-by-process method, to compute $\Omega.$ Whereas the tree-level is computed all at once.
- The parameter space grows to the full MSSM prameter space for many processes, since sfermions jump in the loops.
- Enhances drastically the number of diagram to be computed
 - From 6 at tree-level to more than 1000 at the one-loop level.

- Automated tools are quite efficient
 - FeynArts/FormCalc, Grace, SloopS
- The renormalisation part is well understood
 - ► We can simply treat all particles On-Shell, as in the Standard Model

- It is a process-by-process method, to compute Ω . Whereas the tree-level is computed all at once.
- The parameter space grows to the full MSSM prameter space for many processes, since sfermions jump in the loops.
- Enhances drastically the number of diagram to be computed
 - From 6 at tree-level to more than 1000 at the one-loop level.

- Automated tools are quite efficient
 - FeynArts/FormCalc, Grace, SloopS
- The renormalisation part is well understood
 - We can simply treat all particles On-Shell, as in the Standard Model

- It is a process-by-process method, to compute Ω.
 Whereas the tree-level is computed all at once.
- The parameter space grows to the full MSSM prameter space for many processes, since sfermions jump in the loops.
- Enhances drastically the number of diagram to be computed
 - From 6 at tree-level to more than 1000 at the one-loop level.

Renormalisation issue

- Fixing the finite part of the counterterms.
- usually done when extracting the parameters on physical quantities

B A B A B A A A

Renormalisation issue

- Fixing the finite part of the counterterms.
- usually done when extracting the parameters on physical quantities

- but different schemes exist : t_{β}
 - ► from *M_H*
 - from $A_0 \rightarrow \tau \tau$
- neutralino chargino sector

- ₹ 🖬 🕨

э.

Technically contrived

- thousands of diagrams!
- All are not of the same magnitude

< ∃→

Technically contrived

- thousands of diagrams!
- All are not of the same magnitude

Selecting par of the diagrams the $\alpha_{\textit{QED}}$ contribution

- universal diagrams (independent of external legs)
- Hence can be taken by simply shifting $\alpha_{\it QED} \rightarrow \alpha_{\it QED} + \Delta \alpha_{\it QED} \,_{\it eff}(Q)$

 $lpha_{QED}(Q)$ stands for a small number of diagrams \longrightarrow quick computation!

- ₹ 🖬 🕨

A situation analogous to the LEP measurements

- a % precision
- non decoupling effect from heavy particle

Tree-level couplings : $\tilde{\chi}_1^0 \tilde{\chi}_1^0 Z$, $\tilde{\chi}_1^0 ff$, $\tilde{\chi}_1^0 \tilde{\chi}_1^0 h$, $\tilde{\chi}_1^0 \chi^+ W^-$

< ∃⇒

A situation analogous to the LEP measurements

- a % precision
- non decoupling effect from heavy particle

Tree-level couplings : $\tilde{\chi}_1^0 \tilde{\chi}_1^0 Z$, $\tilde{\chi}_1^0 ff$, $\tilde{\chi}_1^0 \tilde{\chi}_1^0 h$, $\tilde{\chi}_1^0 \chi^+ W^-$

A situation analogous to the LEP measurements

- a % precision
- non decoupling effect from heavy particle

Tree-level couplings : $\tilde{\chi}_1^0 \tilde{\chi}_1^0 Z$, $\tilde{\chi}_1^0 ff$, $\tilde{\chi}_1^0 \tilde{\chi}_1^0 h$, $\tilde{\chi}_1^0 \chi^+ W^-$

We are shifting $\mathcal{L} \to \mathcal{L}_{eff}$

- Easy to do for counterterms such as δZ (include δZ for each leg)
- Possible for triangles (limited number)

Those are universal, in the sense process-independent.

Not so straightforward for boxes

Mixing matrices and external legs corrections

 Ω is mainly driven by the nature of $ilde{\chi}^{0}_{1}$

$$\tilde{\chi} = Z^{-1} \begin{pmatrix} \tilde{B} \\ \tilde{W} \\ \tilde{H}_1^0 \\ \tilde{H}_2^0 \end{pmatrix}$$

∃ \$\mathcal{O}\$

Mixing matrices and external legs corrections

 Ω is mainly driven by the nature of $ilde{\chi}^{0}_{1}$

$$\begin{pmatrix} \tilde{B} \\ \tilde{H}_{2}^{1} \\ \tilde{H}_{2}^{0} \end{pmatrix}$$
$$\begin{pmatrix} {}^{\prime\prime}{}^{1} \\ \tilde{H}_{2}^{0} \end{pmatrix}$$

But some of the loops play a nature-changing role

Hence we expect δZ corrections to give a significant contribution to Ω

► < Ξ >

Which effective operators?

coupling $\tilde{\chi}_1^0 \tilde{f} f$ $\Delta N_{i1}^{\chi f \tilde{f}} = \frac{\delta g'}{g'} N_{i1} + \frac{1}{2} \sum_{i} N_{j1} \delta Z_{ji},$ $\Delta N_{i2}^{\chi f \tilde{f}} = \frac{\delta g}{g} N_{i2} + \frac{1}{2} \sum_{i} N_{j2} \delta Z_{ji},$ $\Delta N_{i3}^{\chi f \tilde{f}} = \left(\frac{\delta g}{g} - \frac{1}{2} \frac{\delta M_W^2}{M_W^2} - \frac{\delta c_\beta}{c_\beta} \right) N_{i3} + \frac{1}{2} \sum_i N_{j3} \delta Z_{ji},$ $\Delta N_{i4}^{\chi f\tilde{f}} = \left(\frac{\delta g}{g} - \frac{1}{2}\frac{\delta M_W^2}{M_W^2} - \frac{\delta s_\beta}{s_\beta}\right) N_{i4} + \frac{1}{2}\sum_{i} N_{j4}\delta Z_{ji}.$

Only the counterterms (without leg corrections)

▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → の Q @

coupling $\tilde{\chi}_1^0 \tilde{\chi}_1^0 Z$

Now the set of counterterms is not finite We must include the genuine triangle contribution

Tree level $\frac{g_Z}{4} \left(N_{13}N_{13} - N_{14}N_{14} \right) \tilde{\chi}_1^0 \gamma_\mu \gamma_5 \tilde{\chi}_1^0 Z^\mu$

Effective

$$g_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}Z}^{\text{eff}} = g_{Z}(1 + \Delta g_{Z}(Q^{2}) + \Delta g_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}Z}^{\Delta}(Q^{2})); \qquad (2)$$
$$\Delta N_{ij}^{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}Z} = \frac{1}{2}\sum_{k} N_{kj}\delta Z_{ki}, \quad (i,j,k) = 1...4. \qquad (3)$$

coupling Zff

ヨト・ヨト

= 900
- at one-loop
- M_1, M_2, μ taken as input instead as physical masses.

► < Ξ ►</p>

ъ

- at one-loop
- M_1, M_2, μ taken as input instead as physical masses.

Code used

• SloopS (FeynArts/FormCalc/LoopTools bundle)

- ₹ ₹ >

- at one-loop
- M_1, M_2, μ taken as input instead as physical masses.

Code used

• SloopS (FeynArts/FormCalc/LoopTools bundle)

Parameter space :

- Generically heavy sfermions ($M_{l}\sim$ 500 GeV, $M_{q}\sim$ 800 GeV), idem for $A_{0}~(\sim 1~{\rm TeV})$
- moderate $t_eta~(t_eta\sim4)$
- Neutralino parameters (M_1, M_2, μ) vary, to span the different cases, but overall yield a light $\tilde{\chi}_1^0$ (~100 GeV)

▶ < ∃ > ...

= nar

- at one-loop
- M_1, M_2, μ taken as input instead as physical masses.

Code used

• SloopS (FeynArts/FormCalc/LoopTools bundle)

Parameter space :

- Generically heavy sfermions ($M_{l}\sim$ 500 GeV, $M_{q}\sim$ 800 GeV), idem for $A_{0}~(\sim 1~{\rm TeV})$
- moderate $t_eta~(t_eta\sim4)$
- Neutralino parameters (M_1, M_2, μ) vary, to span the different cases, but overall yield a light $\tilde{\chi}_1^0$ (~100 GeV)

► < Ξ >

 $M_1=$ 90 GeV, and $M_2, \mu >> M_1$

 $\bullet\,$ t-channel exchange of $\tilde{\mu}$ is dominant

E 99€

Bino case

 $M_1=$ 90 GeV, and $M_2, \mu >> M_1$

• t-channel exchange of $\tilde{\mu}$ is dominant

 Corrections

 $\Delta_{eff} = 17.52\%$ $\Delta_{\alpha} = 14.56\%$ $\Delta_{NE} = 2.06\% (\Delta_{FOL} = 19.58\%)$

▶ < ⊒ >

э.

Bino case

Corrections

 $M_1=$ 90 GeV, and $M_2, \mu >> M_1$

ullet t-channel exchange of $ilde{\mu}$ is dominant

 $\Delta_{eff} = 17.52\%$ $\Delta_{\alpha} = 14.56\%$ $\Delta_{NE} = 2.06\% (\Delta_{FOL} = 19.58\%)$

Dependance with neutralino mass, and t_{eta}

э

Bino case

Corrections

 $M_1=$ 90 GeV, and $M_2, \mu >> M_1$

ullet t-channel exchange of $ilde{\mu}$ is dominant

 $\Delta_{eff} = 17.52\%$ $\Delta_{\alpha} = 14.56\%$ $\Delta_{NE} = 2.06\% (\Delta_{FOL} = 19.58\%)$

Dependance with neutralino mass, and t_{β}

Non decoupling of the squark mass

Susy in astrophysics and at colliders

- $\mu = -100$ GeV, and $M_1, M_2 >> \mu$
 - S-channel exchange of Z is dominant

문에서 문어?

∃ \$\mathcal{O}\$

- $\mu = -100$ GeV, and $M_1, M_2 >> \mu$
 - S-channel exchange of Z is dominant

Corrections		
$\Delta_{eff} = 13.55\%$	$\Delta_lpha=$ 14.62%	$\Delta_{\textit{NE}}=21.09\%(\Delta_{\textit{FOL}}=-7.54\%)$

Discrepancy

The effective correction is not doing any better than Δ_{lpha} !

► < Ξ ►</p>

ъ

- $\mu = -100$ GeV, and $M_1, M_2 >> \mu$
 - S-channel exchange of Z is dominant

Corrections		
$\Delta_{eff} = 13.55\%$	$\Delta_lpha=14.62\%$	$\Delta_{\textit{NE}}=21.09\%(\Delta_{\textit{FOL}}=-7.54\%)$

Discrepancy

The effective correction is not doing any better than Δ_{lpha} !

However, this can be traced to the other particles running in the loop Had we include them the discrepancy would be smaller.

- $\mu = -100$ GeV, and $M_1, M_2 >> \mu$
 - S-channel exchange of Z is dominant

Discrepancy

The effective correction is not doing any better than Δ_{lpha} !

However, this can be traced to the other particles running in the loop Had we include them the discrepancy would be smaller.

Another effect : the boxes

- ₹ ₹ >

- $\mu = -100$ GeV, and $M_1, M_2 >> \mu$
 - S-channel exchange of Z is dominant

$\Delta_{eff} = 13.55\%$ $\Delta_{\alpha} = 14.62\%$ $\Delta_{NE} = 21.09\% (\Delta_{FOL} = -7.54\%)$

Discrepancy

The effective correction is not doing any better than Δ_lpha !

However, this can be traced to the other particles running in the loop Had we include them the discrepancy would be smaller.

Another effect : the boxes

Squark non-decoupling

E

An efficiency of the effective coupling which is case-dependent.

トメヨト

э.

An efficiency of the effective coupling which is case-dependent. Still, promising results that will be enhanced

- wino case
- including higgs-exchange corrections
- including all final state

▶ < ⊒ ▶

= 900

An efficiency of the effective coupling which is case-dependent. Still, promising results that will be enhanced

- wino case
- including higgs-exchange corrections
- including all final state

We do have an answer of the first point in

- Computing predictions for experiments in one model
- Assessing the reach of general susy in one measurement

(4) (E) (b)

An efficiency of the effective coupling which is case-dependent. Still, promising results that will be enhanced

- wino case
- including higgs-exchange corrections
- including all final state

We do have an answer of the first point in

• Computing predictions for experiments in one model

• Assessing the reach of general susy in one measurement

But not for the second one

- Those effective couplings apply to any susy model.
- But additional particles will modify the relic density
 - ► NMSSM, U(1)' MSSM

What can we do for it?

▶ < ∃ >

There is a way not to choose a specific model : ... the Effective Field Theory

문에서 문어.

∃ \$\mathcal{O}\$

There is a way not to choose a specific model : ... the Effective Field Theory

э.

There is a way not to choose a specific model : ... the Effective Field Theory

▶ < ⊒ >

Assumption : decoupled spectrum, heavier than ${\it M}$

문에서 문어.

∃ \$\mathcal{O}\$

Assumption : decoupled spectrum, heavier than M

- No new light particles (NMSSM)
- No need to be above $M_{\tilde{f}}$

We only require $Q \ll M$, where Q is the scale of Higgs processes.

▶ ∢ ≣ ▶

Assumption : decoupled spectrum, heavier than M

- No new light particles (NMSSM)
- No need to be above $M_{\tilde{f}}$

We only require $Q \ll M$, where Q is the scale of Higgs processes.

Theorem

MSSM being renormalisable \rightarrow EFT is predictive

► < Ξ ►</p>

Assumption : decoupled spectrum, heavier than M

- No new light particles (NMSSM)
- No need to be above $M_{\tilde{f}}$

We only require $Q \ll M$, where Q is the scale of Higgs processes.

Theorem

MSSM being renormalisable \rightarrow EFT is predictive

Is it enough ?

• Not if an accidental cancellation occurs

$$\mathcal{O} = \mathcal{O}^{(0)} + rac{1}{M}\mathcal{O}^{(1)} + rac{1}{M^2}\mathcal{O}^{(2)} + ...$$

well suited only if $\frac{1}{M^n} \mathcal{O}^{(n)}$ small compared to previous orders.

ヨト・ヨト

э.

 $\mathsf{Generic} \to \mathsf{include} \mathsf{ all possible operators}$

$$\frac{c_k}{M^{d_k}}\mathcal{O}(\Phi,\Phi^{\dagger})$$

▶ < ≣ ▶

Ξ.

 $\mathsf{Generic} \to \mathsf{include} \; \mathsf{all} \; \mathsf{possible} \; \mathsf{operators}$

$$\frac{c_k}{M^{d_k}}\mathcal{O}(\Phi,\Phi^{\dagger})$$

Theoretical consistency

- Gauge Invariance
- Lorentz invariance
- Superfield formalism

- ₹ ₹ >

 $\mathsf{Generic} \to \mathsf{include} \; \mathsf{all} \; \mathsf{possible} \; \mathsf{operators}$

$$\frac{c_k}{M^{d_k}}\mathcal{O}(\Phi,\Phi^{\dagger})$$

Theoretical consistency	
Gauge Invariance	
 Lorentz invariance 	
 Superfield formalism 	

Retriction to the Higgs sector also done by Antoniadis et al., Carena et al.

▶ < ∃ >

Dimension 5	Dimension 6
	$\frac{a_i}{M^2} \left(H_i^{\dagger} e^{2g V_i} H_i \right)^2$
$rac{\zeta_1}{M} \left(H_1 \cdot H_2\right)^2$	$\frac{^{a_3}}{^{M^2}}\left(H_1^{\dagger}e^{^{2gV_1}}H_1\right)\left(H_2^{\dagger}e^{^{2gV_2}}H_2\right)$
	$rac{\mathbf{a_4}}{M^2}\left(H_1\cdot H_2 ight)\left(H_1^\dagger\cdot H_2^\dagger ight)$
	$\tfrac{a_5}{M^2} \left(H_1^{\dagger} e^{2g V_1} H_1 \right) \left(H_1 \cdot H_2 \right) + h.c.$
	$\tfrac{\mathbf{a}_{6}}{M^2}\left(H_2^{\dagger}e^{2gV_2}H_2\right)\left(H_1\cdot H_2\right)+h.c.$

<ロ > < 回 > < 回 > < 回 > < 回 > <

∃ ∽ へ (~

Dimension 5	Dimension 6
	$\frac{a_i}{M^2} \left(H_i^{\dagger} e^{2g V_i} H_i \right)^2$
$rac{\zeta_1}{M} \left(H_1 \cdot H_2\right)^2$	$\frac{^{a_3}}{^{M^2}}\left(H_1^{\dagger}e^{^{2gV_1}}H_1\right)\left(H_2^{\dagger}e^{^{2gV_2}}H_2\right)$
	$rac{a_4}{M^2} \left(H_1 \cdot H_2 ight) \left(H_1^\dagger \cdot H_2^\dagger ight)$
	$\tfrac{a_5}{M^2} \left(H_1^{\dagger} e^{2g V_1} H_1 \right) \left(H_1 \cdot H_2 \right) + h.c.$
	$\frac{a_6}{M^2} \left(H_2^{\dagger} e^{2g V_2} H_2 \right) \left(H_1 \cdot H_2 \right) + h.c.$

Susy breaking

 $\zeta_{1} = \zeta_{10} + \theta^{2} m_{s} \zeta_{11}$ $a_{i} = a_{i0} + \theta^{2} m_{s} a_{i1} + \theta^{2} m_{s} a_{i1} + \theta^{2} \theta^{2} m_{s}^{2} a_{i2}$

ミ▶▲ミ▶ ミ のへで

Dimension 5	Dimension 6
	$\frac{a_i}{M^2} \left(H_i^{\dagger} e^{2g V_i} H_i \right)^2$
$rac{\zeta_1}{M} \left(H_1 \cdot H_2\right)^2$	$\frac{a_3}{M^2} \left(H_1^{\dagger} e^{2gV_1} H_1 \right) \left(H_2^{\dagger} e^{2gV_2} H_2 \right)$
	$rac{\mathbf{a_4}}{M^2}\left(H_1\cdot H_2 ight)\left(H_1^\dagger\cdot H_2^\dagger ight)$
	$\tfrac{a_5}{M^2} \left(H_1^{\dagger} e^{2g V_1} H_1 \right) \left(H_1 \cdot H_2 \right) + h.c.$
	$\frac{a_6}{M^2} \left(H_2^{\dagger} e^{2g V_2} H_2 \right) \left(H_1 \cdot H_2 \right) + h.c.$

Susy breaking

$$\begin{aligned} \zeta_1 &= \zeta_{10} + \theta^2 m_s \zeta_{11} \\ a_i &= a_{i0} + \theta^2 m_s a_{i1} + \theta^2 m_s a_{i1} + \theta^2 \theta^2 m_s^2 a_{i2} \end{aligned}$$

Effective coefficients $\zeta_{10}, \zeta_{11}, a_{10}, a_{11}, a_{12}...$

▶ < ∃ >

= 900

Initially, those operators were introduced for the following reasons

- raising M_h without tuning the loops.
- modifying the higgs decays.

▶ < ∃ >

э.

Initially, those operators were introduced for the following reasons

- raising M_h without tuning the loops.
- modifying the higgs decays.

Although the initial motivaiton is the relic density There will also be lots of constraints from Higgs searches.

Hence the analysis will be two-fold

- modification in the relic density
- constraints on the higgs searches at colliders

► < Ξ >

Higss searches at the LHC have excluded most of the Standard Model mass range

イロト イポト イヨト

э.

Computation

Feynman double expansion : Loops and $\frac{1}{M}$

- The loops are compulsory for higgs interactions
 - Depending on the observable zero, one or two loops will be computed
- Effective expansion truncated at order two

We do not consider interference

$$\mathcal{O} = \mathcal{O}_{tree} + \delta \mathcal{O}_{loop} + \delta \mathcal{O}_{eff}$$

► < Ξ >

ъ.

Computation

Feynman double expansion : Loops and $\frac{1}{M}$

- The loops are compulsory for higgs interactions
 - Depending on the observable zero, one or two loops will be computed
- Effective expansion truncated at order two

We do not consider interference

$$\mathcal{O} = \mathcal{O}_{tree} + \delta \mathcal{O}_{loop} + \delta \mathcal{O}_{eff}$$

Precision of the computation

- EFT theorem imply that we could reach any accuracy
- Loop corrections are expected to be under control
- Effective corrections can go wrong !

GDLR Susy in astrophysics and at colliders
Interactions	Observables
$(h_1,h_2)(W,Z)$	W,Z masses
$(h_1, h_2)(h_1, h_2)$	Higgs masses
	Higgs coupling to matter
$(\tilde{h}, \tilde{W}, \tilde{Z})(\tilde{h}, \tilde{W}, \tilde{Z})$	neutralino/chargino masses
	neutralino coupling to SM fields

三 わへで

Interactions	Observables
$(h_1, h_2)(W, Z)$	W,Z masses
$(h_1, h_2)(h_1, h_2)$	Higgs masses
	Higgs coupling to matter
$(\tilde{h}, \tilde{W}, \tilde{Z})(\tilde{h}, \tilde{W}, \tilde{Z})$	neutralino/chargino masses
	neutralino coupling to SM fields

MZ, MW

They are taken as experimental input. Hence the weak couplings will be changed Zff coupling change, allowing for changes in EW precision test

▶ < ∃ >

$$\epsilon_{1,2,3} \propto \left(a_{10} - a_{30} t_{eta}^2 + a_{20} t_{eta}^4
ight)$$

문에서 문어

∃ \$\mathcal{O}\$

$$\epsilon_{1,2,3} \propto \left(a_{10} - a_{30} t_{eta}^2 + a_{20} t_{eta}^4
ight)$$

EFT validity

• Check for cancellation in low order

 $\bullet~ {\rm Criterion}~ \left| \frac{\delta m_h^{(3)}}{m_h^{(0)+(1)+(2)}} \right| < \epsilon$

▶ ★ 臣 ▶ ...

∃ 990

$$\epsilon_{1,2,3} \propto \left(a_{10} - a_{30} t_{eta}^2 + a_{20} t_{eta}^4
ight)$$

EFT validity

• Check for cancellation in low order

• Criterion
$$\left| \frac{\delta m_h^{(3)}}{m_h^{(0)+(1)+(2)}} \right| < \epsilon$$

Colliders constraints

- use of HiggsBounds for LEP and Tevatron
- use of Lepton-Photon data from LHC
- expectations for 5 fb^{-1}

▶ < ∃ >

э.

$$\epsilon_{1,2,3} \propto \left(a_{10} - a_{30} t_{eta}^2 + a_{20} t_{eta}^4
ight)$$

EFT validity

• Check for cancellation in low order

• Criterion
$$\left| \frac{\delta m_h^{(3)}}{m_h^{(0)+(1)+(2)}} \right| < \epsilon$$

Colliders constraints

- use of HiggsBounds for LEP and Tevatron
- use of Lepton-Photon data from LHC
- expectations for 5 fb^{-1}

Relic density

• Not included in the first version

► < Ξ ►</p>

э.

The following codes are used

- IanHEP to derive Feynman rules
- Mathematica to extract initial parameters and fields
- CalcHEP/Suspect/HDecay for Higgs phenomenology
- *micrOmegas* relic density

The following codes are used

- *lanHEP* to derive Feynman rules
- Mathematica to extract initial parameters and fields
- CalcHEP/Suspect/HDecay for Higgs phenomenology
- *micrOmegas* relic density

Higgs decay/production computation can be long Hence need for approximations

- Decays : form factor rescaled by $\left(\frac{g_{eff}}{g_{SM}}\right)$. Caution for loop-indued decays.
- VBF and associated production

$$\sigma_{eff} = \sigma_{SM} \left(\frac{g_{VVh \ eff}}{g_{VVh \ SM}} \right)^2$$

• gluon fusion

$$\sigma_{gg \to h} = \frac{\Gamma_{h \to gg}}{\Gamma_{h \to gg} SM} \sigma_{gg \to h} SM$$

Benchmarks

- i) M_{h max}
- ii) no-mixing
- iii) gluephobic
- iv) no-trilinear couplings

Characterised by

•
$$M_{ ilde{f}}=1$$
 Tev

- $\mu=M_2\sim$ 200 GeV (except iv) $M_2=1$ TeV)
- $M_3 = 800 \text{ GeV}$

Away from susy direct searches.

► < Ξ >

Benchmarks

- i) M_{h max}
- ii) no-mixing
- iii) gluephobic
- iv) no-trilinear couplings

Characterised by

•
$$M_{ ilde{f}}=1$$
 Tev

- $\mu=M_2\sim$ 200 GeV (except iv) $M_2=1$ TeV)
- $M_3 = 800 \text{ GeV}$

Away from susy direct searches.

Free parameters

• t_{β}, M_{A_0}

•
$$c_i \in [-1,1]$$

(20+2)-dimensional space \rightarrow Need for efficient methods

GDLR Susy in astrophysics and at colliders

ミ▶▲ミ▶ ミ つへで

(20+2)-dimensional space \rightarrow Need for efficient methods

Scanning techniques

- grid scan (slow, but unbiased)
- Markov Chain Monte Carlo (MCMC)
- Genetic algorithms

► < Ξ ►</p>

(20+2)-dimensional space \rightarrow Need for efficient methods

Scanning techniques

- grid scan (slow, but unbiased)
- Markov Chain Monte Carlo (MCMC)
- Genetic algorithms

Difficulties

- \bullet Random efficiency \sim 0.01%
- Computation time (hdecay running)
- Zone finding with MCMC

▶ < ∃ >

MSSM predictions

▲御▶ ▲ 陸▶ ▲ 陸≯

∃ \$\mathcal{O}\$

M_{An} (GeV)

Ξ.

MSSM predictions

▶ < ∃ >

Э

Limits on the the benchmarks i), ii) and iii)

▶ < ∃ >

æ

Limits on the the benchmarks i), ii) and iii)

Exclusion identical to $h\to \tau\tau$ only

• • • • • • • •

물 에서 물 어

э

Limits on t_{β}, M_{A_0} in BMSSM

GDLR

ヨトメヨト

Э

A very interesting path into susy

- To constrain efficiently susy, we need
 - a reliable computation method
 - a way to deal with the many different realisations of susy
- Effective Field Theory can be used for both, since they avoid many issues

- ₹ 🖬 🕨

ъ

A very interesting path into susy

- To constrain efficiently susy, we need
 - a reliable computation method
 - a way to deal with the many different realisaitons of susy

• Effective Field Theory can be used for both, since they avoid many issues

But the best is yet to come

- Evaluate all constraints together (with Relic density)
- enlarge the EFT to difeerent sectors, to broaden its use
- include some non-standard decays, as $h \rightarrow \text{invisible}$ (for light $\tilde{\chi}_1^0$).

▶ < ∃ >