EUROnu Costing Detectors

EUROnu WBS Safety Meeting, 29 September 2011 Paul Soler

MIND engineering concept

- MIND steel plates: 14 m octagonal plates (3 cm thick)
- Two planes of scintillator (1 cm each) between steel plates
- Toroidal field by having100 kA through STL in centre
 - Engineering and magnetic field maps being developed at Fermilab

MIND engineering concept

Dimensions of each plane and support structures

Area plate=156.6 m² Mass plate=37.6 t (159.6 t with the ears)

Total length = 140 m2800 modules (5 cm) Total 105 kton steel (assume €1000/ton)

9.2 kton scintillator (assume €6000/ton)

MIND engineering concept

- Manufacture of metal plates:
 - 2 m strips or mixture 2 m & 3 m
 - 3 mm slots between plates

2m strip

EUROnu safety meeting, 29 Sept 20112m & 3m strip

MIND scintillator

- Scintillator: x-view and y-view planes 1 cm thick each plane
 - Baseline: rectangular scintillator strips (3.5 cm wide, $\sigma \sim 1$ cm)
 - Alternative: triangular strips ($\sigma \sim 5 \text{ mm}$) 2.3 times more channels (makes project ~20% more expensive)
 - Co-extrusion fibre-scintillator
- Wavelength shifting fibres
 - Kuraray currently is the only manufacturer in the world that can deliver WLS fibres of consistently good performance
- Numbers: 788 scint./module x 2800 modules = 2.2 M bars
 - 25,000 km of WLS fibre (~€1/m)

Photon detectors

- Photodetectors: SiPMT (also known as MPPC, MRS, etc.)
 - SiPMTs improving and cost is lowering (assume €10/channel) total estimated number of channels = 4.4 M
 - Silicon avalanche photodiode operating in Geiger mode
 - Multi-pixels: number of pixels that fire is prop. number of photoelectrons
 - Hamamatsu are already producing quads (ie 4 channel devices)
 - Further encapsulation might be possible

- Work Breakdown Structure
 - MINOS and NOvA provide useful examples of WBS for MIND
 - Started to populate spreadsheet used as interface for costing tool (but there are still many things I don't understand about how to fill it in)
 - Note: 2.3 Magic baseline detector (the same as 2.2 but cost ~50%)

2.2.	Intermediate baseline detector (MIND 100 kton)	Cost (%)
2.2.1.	Detector R&D	0.3
2.2.2.	Underground cavern	22.0
2.2.3.	Steel plate fabrication	38.7
2.2.4.	Magnet coil	0.2
2.2.5.	Scintillator detector fabrication	30.9
2.2.6.	Electronics, DAQ and database	6.1
2.2.7.	Detector installation	1.5
2.2.8.	Project management	0.3

2.2.1.	Detector R&D
2.2.1.1.	Scintillator R&D
2.2.1.2.	STL R&D
2.2.1.3.	Photon detector and electronics R&D
2.2.2.	Underground cavern
2.2.2.1.	Geomechanical studies
2.2.2.2.	Cavern construction
2.2.2.3.	Cavern outfitting

Work Bre	Work Breakdown Structure	
2.2.3.	Steel plate fabrication	
2.2.3.1.	Engineering, design	
2.2.3.2.	Steel management	
2.2.3.3.	Detector plane prototypes	
2.2.3.4.	Steel procurement	
2.2.3.5.	Steel plate assembly	
2.2.3.6.	Steel transport	
2.2.3.7.	Steel support structures and handling fixtures	
2.2.4.	Magnet coil	
2.2.4.1.	Engineering, design	
2.2.4.2.	STL fabrication	
2.2.4.3.	STL cryo plant	
2.2.4.4.	Power supplies nu safety meeting, 29 Sept 2011	

2.2.5.	Scintillator detector fabrication
2.2.5.1.	Engineering, design
2.2.5.2.	Scintillator strips
2.2.5.3.	WLS fibre
2.2.5.4.	Scintillator modules
2.2.5.5.	Photon detectors (SiPMTs)
2.2.5.6.	Multiplexing boxes and connectors
2.2.5.7.	Calibration systems
2.2.5.8.	Assembly and test equipment
2.2.5.9.	Factories
2.2.5.10.	Scintillator management EUROnu safety meeting, 29 Sept 2011

Work Breakdown Structure

2.2.6.	Electronics, DAQ and database
2.2.6.1.	Front end electronics
2.2.6.2.	Data routing and trigger farm
2.2.6.3.	Data acquisition and triggering
2.2.6.4.	Database
2.2.6.5.	Auxiliary systems
2.2.6.6.	Slow controls and monitoring
2.2.6.7.	High Voltage systems
2.2.6.8.	Electronics management

EUROnu safety meeting, 29 Sept 2011

2.2.7.	Detector installation
2.2.7.1.	Management
2.2.7.2.	Lab infrastructure
2.2.7.3.	Plane assembly area
2.2.7.4.	Installation
2.2.7.5.	Alignment and survey
2.2.8.	Project management

- Safety MIND:
 - 2.2.2: Construction of cavern in underground facility

Usual underground safety considerations: ventilation, rock bolting, structural stability of cavern and construction infrastructure

2.2.3: Steel plate fabrication

Safety in welding and assembly of plates underground, engineering solution for mounting 14x14 m² plates vertically

2.2.4: Magnet coil

Operation of small cryogenic plant underground

- 2.2.5: Scintillator fabrication Module fabrication in laboratories and final assembly udnerground
- 2.2.6: Electronics, DAQ, database

Electronics assembly in labs and installation underground

2.2.7: Detector installation

Final installation of all components underground, personnel safety and integrity of detector components

Water Cherenkov

- MEMPHYS: 3x65mx60m water Cherenkov modules (440 kton fiducial) but could be expanded to 3x65mx80m (572 kton)
- Either SPL Super Beam or CERN Beta Beam to Frejus tunnel in Modane, France, 130 km from CERN.

Water Cherenkov design

MEMPHYS concept: engineering of cavern from LAGUNA

- Laboratoire Souterrain de Modane Fréjus at 4800 m.w.e.
- Fiducial: 440 kton (3 x 65mX60 modules), or 572kton (3 x 65mX80m)
- Readout : ~3 x 81,000 12" PMTs (alternatively 8", 10") for 30% cover

MEMPHYS R&D

R&D on photon detector readout: 12" and 8" PMT design Groups of 16 PMTS read out by one ASIC: PArISROC

MEMPHYNO Prototype

testboard

EUROnu safety meeting, 29 Sept 2011

- Work Breakdown Structure: to be included in each project
 - Cern2Frejus WBS: 5. Far Detector (x=5)
 - Beta Beams WBS: 4. Main Detectors (x=4)

x.2.	Water Cherenkov detector (MEMPHYS)	Cost (%)
x.2.1.	Detector R&D	0.1
x.2.2.	Underground cavern	31.4
x.2.3	Tank	27.0
x.2.3.	Photomultiplier tubes	36.4
x.2.4.	Electronics, DAQ and database	0.9
x.2.5.	Detector installation	3.3
x.2.6.	Project management	0.9

EUROnu safety meeting, 29 Sept 2011

x.2.	Water Cherenkov detector (MEMPHYS)
x.2.1.	Detector R&D
x.2.1.1.	PMT R&D
x.2.1.2.	Electronics R&D
x.2.2.	Underground cavern
x.2.2.1.	Geomechanical studies
x.2.2.2.	Cavern excavation
x.2.3.	Tank
x.2.3.1	Materials
x.2.3.2	Manpower

Work Breakdown Structure

Photomultiplier tubes
Photomultiplier tubes
PMT Housing
PMT support
Cables
Calibration systems
Assay and test equipment

EUROnu safety meeting, 29 Sept 2011

x.2.4.	Electronics, DAQ and database
x.2.4.1.	Front end electronics
x.2.4.2.	High Voltage
x.2.4.3.	Online computing
x.2.4.4.	Data acquisition
x.2.4.5.	Database
x.2.4.6.	Auxiliary systems
x.2.4.7.	Electronics management
x.2.5.	Detector installation
x.2.5.1.	Management
x.2.5.2.	Detector assembly
x.2.5.3.	Water/purification
x.2.6.	Project management

- Safety MEMPHYS:
 - x.2.2: Underground cavern

Usual underground safety considerations: excavation, ventilation, rock bolting, structural stability of cavern and construction infrastructure

x.2.3: Construction tank

Sealing cavern for leaks, detector supports, ventilation during construction, operation at heights (80 m x 65 m diameter)

– x.2.3: Photomultiplier tubes

Assembly tube modules in labs, installation underground by gradual filling (as in Super-K)

- x.2.4: Electronics, DAQ, database
 Electronics assembly in labs and installation underground
- x.2.5: Detector installation

Final installation of all components underground, personnel safety and integrity of detector components

Near Detectors

Near detector for a Neutrino Factory:

- Neutrino flux (<1% precision) and extrapolation to far detector
- Charm production (main background) and taus for Non Standard Interactions (NSI) searches

Work Breakdown Structure: start off with Neutrino Factory

2.1.	Near Detector	Cost (%)
2.1.1.	Mini-MIND	10.1
2.1.2.	High resolution tracker	41.9
2.1.3.	Silicon vertex	28.5
2.1.4.	Computing	5.0
2.1.5.	Installation	10.3
2.1.6.	Project management	4.3

EUROnu safety meeting, 29 Sept 2011

2.1.1.	Mini-MIND
2.1.1.1.	Steel plane fabrication MIND
2.1.1.2.	Scintillator MIND
2.1.1.3.	Fibre MIND
2.1.1.3.	SIPM MIND
2.1.2.1.	Electronics MIND
2.1.2.2.	Coil Mind
2.1.2.	High resolution tracker
2.1.2.1.	Scintillator HighRes
2.1.2.2.	Fibre HighRes
2.1.2.3.	SiPM HighRes
2.1.2.4.	Electronics HighRes
2.1.2.5.	Coil 25

2.1.3.	Silicon vertex
2.1.3.1.	Silicon
2.1.3.2.	Silicon electronics
2.1.4.	Computing
2.1.4.1.	Central system and trigger farm
2.1.4.2.	Data acquisition
2.1.4.3.	Database
2.1.5.	Installation
2.1.5.1.	Infrastructure
2.1.5.2.	Materials receiving and handling
2.1.5.3.	Detector assembly
2.1.5.4.	Alignment and survey
2.1.6.	Project management 00 0+ 0044

- Safety Near Detector:
 - 2.1.1: MiniMIND

Same safety issues associated to the assembly of the iron pates and scintillator planes underground

- 2.1.2: High resolution tracker

Mechanics of scintillator support structure needs to be engineered. No safety issues associated with making of scintillator modules

– 2.1.3: Silicon vertex

No major issues in the assembly of a silicon detector, mechanics needs to be well engineered for precision alignment but does not affect safety

2.1.5: Detector installation

Final installation of all components underground, personnel safety and integrity of detector components

Conclusions

- WBS is the same as presented at the last costing meeting
- I have added comments on the safety of each of the detector components.
- The main issues arise in the construction and operation of detectors underground
- There is already experience from MINOS, SuperK and other underground detectors on these issues.