

Safety Meeting WP2

E. Baussan on behalf of WP2

Outlines:

- Status on WP2
- Safety
 - Alara Approach
 - Simulation

Target Technology

Summary of target options

Mercury jet

high-Z (too many neutrons & heat load on horn) not chemically compatible with horn

Graphite rod

thermal conductivity degrades with radiation damage mechanical stress depends on dT hence short life time

Beryllium rod

thermal stress is significant alternative geometries could overcome the problem (still under investigation)

Integrated Be target and horn

extra heat load makes it even more challenging combined failure modes could reduce the life time

Fluidised powder target

potential solution for higher heat load

Static pebble bed

reduced stresses. Favourable transversal cooling. Good yield

Ottone Caretta, RAL, January 2011

Target Technology

Horn: Current status for WP2

Target Station Baseline:

- Solid Static target
- Use multiple 4 targets+ horns
- Beam frequency 12.5 Hz
- Cooling (EUROnu WP2 Note 10-06)
- Power distribution due to Joule losses
 & secondary particles
- Energy balance, to maintain working temperature
- Flow rate
- Jet distribution along the outer conductor
- h correlation for jets' geometry

Horn: Current status for WP2

Safety Items in WP2

Toward a safety WP2 roadmap

ALARA approach :

⇒ Anticipate and reduce individual and collective exposition to radiation

Iterative processes:

- Préparation
 - Building Structure lists of materials
 - Dose Equivalent Rate Estimation
 - Optimize procedure during operation and maintenance phases
 - Evaluate residual activity of wastes
- Execution
- Safety Analyse from previous facilities (WANF, CNGS, NuMi, J-PARC...)

As Low As Reasonably Achievable

Design

Design of the SB line:

- Proton Driver line
- Experimental Hall
 - MW Target Station
 - Decay Tunnel
 - Beam Dump
- Maintenance Room
- Service Gallery
 - Power supply
 - Cooling system
 - ...
- Waste Area

Safety: Elements

MW Target Station:

- Focusing System
- Crane System
- Automated robot
- Mechanical structure for the for horn
- Dose Rate Monitoring System
- Residual Dose Rate Plateform
- Operation Under Helium Atmosphere
 - Flushing with air
 - filter to measure radioactive pollution (dust, tritium ...)
- Residual Dose Rate Plateform
- Investigation of other radionucleides transport (environmental constraint)
- •

Feed back from other neutrino beam experiments

Recommandations from others facilities:

- Cracks in welds
- Use flexible pipes to reduce stress and fatigue
- Use semi flexible conductor because of important magnetic force between stripline => can break cable
- Heat dissipation of the stripline
- Water leaks due to galvanic corrosion
 avoid trapped water and choose
 material carefully
- Remote design for repairing/exchange
- Need Spares
- ...

Stripline plate with soft transition

Radiations simulations: CNGS Benchmark.

Beam Features:

- Proton Energy: 400 GeV/c

- Intensity : 8.0 10¹² pps

- Irradiation time: 200 days

Target (CNGS like):

- Material : Graphite

- Cylinder : 130 cm x 4mm (Diameter)

Horn:

- Material : Anticorodal 110

Shielding for the Target Station:

- Walls and roof: 80 cm of Iron, 8 Slabs (2.5m x 2m x10cm)

- Lateral and Front Marble Slabs
- Front Iron Slab
- ⇒ Evolution of the DER with time performed with FLUKA 2011.2.3

Radiations simulations: CNGS Benchmark.

Radiations simulations: Titanium Target.

Beam Features:

- Proton Energy: 4,5 GeV/c

- Intensity : 18. 10¹⁴ pps

- Irradiation time: 200 days

Target:

- Material : Titanium

- Cylinder : 78 cm x 1.5mm (Diameter)

Horn:

- Material : Anticorodal 110

Shielding for the Target Station:

- Walls and roof: 80 cm of Iron, 8 Slabs (2.5m x 2m x10cm)

- Lateral and Front Marble Slabs
- Front Iron Slab
- ⇒ Evolution of the DER with time performed with FLUKA 2011.2.3

Radiations simulations: Titanium Target.

Chemical composition of Material:

Target => Ti(100%)

Horn => Anticorodal 110 alloy Al (95.5%), Si(1,3%), Mg(1,2%), Cr(0.2%), Mn(1%), Fe (0.5%), Zn(0.2%), Cu(0.1%)

Decay Pipe => Steel P355NH Fe(96.8%), Mn(1.65%), Si(0.5%), Cr(0.3%), Ni(0.3%), C(0.2%)

Tunnel => Concrete O(52.9%), Si(33.7%), Ca(4.4%), Al(3,49%), Na(1,6%), Fe(1.4%), K(1,3%), H(1%), Mn(0.2%), C(0.01%)

Surrounding Environment => Molasse O(49%), Si(20%), Ca,(9.7%), Al(6.4%), C(5%), Fe(3.9%), Mg(3.2%), K(1%), Na(0.5%), Mn(0.1%)

Four horn station layout

Evolution of the target activity with cooling time:

Residual nuclei

After 1 day

Evolution of the horn specific activity (Bq.cm⁻³) with cooling time:

Next Steps:

- Full Design simulation of the installation
- Contribution of each element to the DER
- Individual and collective DER calculation with cooling times
- Intervention Scenarios (normal operation, maintenance, emergency....)