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® Three Iterations among the Sec. Eds. done
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Progress since last meeting

® Added an
example for
,the GIM
mechanism at
work" in the
Kaon system

FCNCs are suppressed by this GIM mechanism. In
fact, FCNC’s in the kaon system involve a transition of
an s quark into a d quark. This can be achieved by a two
subsequent charged current processes involving (in the two
family picture) the up and the charm quark as an inter-
mediate state. Taking into account Cabibbo mixing these
amplitudes are

A(s - d)=A(s > u—d)+ A(s — c — d)
= sinf¢ cosOc|[f(my) — f(m.)] (1)

Hence, if the up and charm quark masses were degenerate,
no kaon FCNC processes, including K - K mixing could
occur.

However, the up and charm masses are not degenerate
and thus K - K can occur. Neglecting the small up-quark

mass, the amplitude for K - K mixing turns out to be

2
A(K — K) « sin® 8¢ cos® O¢ m—j (2)
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from which Gaillard and Lee (1974) could extract an es-
timate for the charm-quark mass of m. ~ 1.5 GeV by
comparison with data. It was one of the great triumphs
in particle physics when a few months later narrow reso-
nances with masses of about 3 GeV were discovered whick’
were identified as bound state of ¢ and ¢ This discov-

ery completed the second particle family and introduced
a 2% 2 aiark mivine matriv into the nhenomenoloov of



® Added an illustration
of the Sacharov
conditions

In order to illustrate the first two Saharov conditions,
we employ a very simplistic example. Assume that in the

early universe existed a particle X that can decay to only
two final states |f;) and |f;). These two state have the

baryon numbers N ]gl) and Ng) , and the decay rates are
F(X—>f1):r07' and F(X—>f2):F0(1—7‘), (4)

where I is the total width of X Of course, there is also
the CP conjugate situation in which the particle X decays

to the state f; with the baryon number —N 1(31) and f, with
the baryon number —N 1(32) . The rates are

F()_(ﬁfl)zro’f_' and F(Xﬁf_.z):[b(l—f) (5)

where [}, is the same as for X due to CP invariance.
The overall change AN}, in baryon number induced by
the decay of an equal number of X and X particles is

ANp = 'I‘Nl(gl) + (1 - r)Nl(f) — fNél) —(1— f)NéQ)
_ 1 2
=(r—r7) (Nz(;)— 1(;)) (6)

Thus ANp non-zero means that we have to have CP_vio—
lation (r # 7) and a violation of baryon number (Ng) #

Ng) ), illustrating the first two conditions.



® Added a
section on the

basics of CP
violation

13.3 CP Violation in a lagrangian field theory

The standard model is formulated as a quantum field the-
ory based on a Lagrangian derived from symmetry prin-
ciples. To this end, the (hermitean) Lagrangian of the SM
is given in terms of scalar operators O; with couplings a;

L@)=) (aiOi (z) + a0} (x)) , (7)

()

where the O; are composed of the SM quark, lepton and
gauge fields. It is straightforward to verify that C'P con-
servation implies that all couplings a; can be made real
by suitable phase redefinitions of the fields composing the
©;. In turn, CP is violated in a lagrangian field theory, if
there is no choico of phases that renders all a; real.

In the SM there are in principle two sources of CP
violation. The so-called “strong CP violation” orlglnatcs
from special features of the QCD vacuum, resulting in a
contribution of the form

Estrong CcpP — =0 _GMU aGa (8)

where G, (G,.) is the (dual) field strength of the gluon
field. This term is P and CP violating due to its pseu-



® Added a section
on CP
Phenomenology,
explaining the
various kinds of
CPV and
introducing
some basic
nhotions

13.6 CP violation phenomenology
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Since CP violation is due to irreducible phases of coupling

constants, it becomes observable through interference ef-
fects. The simplest example is an amplitude consisting of
two distinct contributiuons
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A(B — f) = Ai(f|O1|B) + A2(f|O2|B) (26)

where A; /o are (complex) coupling constants (in our case
combinations of CKM matrix elements) and (f|O; /2| B)
are matrix elements of interaction operators between ini-
tial and final state. S

The CP image is the process fB — f yielding

A(B — f) = X{(f|O]|B) + X3 (flO}|B)  (27)

The matrix elements of OiT/)z involve only strong interac-

tions which we assume to be CP invariant. Hence we have
(flO1|B) = (f|0:1|B) and (f|O}|B) = (f|02|B) (28)
Thus the CP Asymmetry becomes

I'(B— f)—I'(B— J)
I'B— f)+I'(B— f)
o< 2 Im[A1 As] Im[(f|O1|B)(f|O2| B)”]

Acp(B — f) = (29)



Remaining To Do's

Few minor comment still need to be included
References need to be checked and validated

Interplay with Chapter 7 (Mixing and Time
Dependence) needs to be checked

Fix a few TeXnicalities.



