Bolometric detectors in neutrino physics

Sergio Di Domizio Università & INFN Genova

GDR Neutrino 2011

November 29 2011, Annecy

Outline

- Bolometric technique
 - Working principles
 - Detector operation
 - Performances
- Bolometers in neutrino physics
 - Neutrino mass measurement
 - Double beta decay
 - Background reduction in DBD bolometric experiments

Bolometers working principles

Energy release detected as a temperature rise of the absorber: $\Delta T = E/C$

Energy carried by phonons: $\langle \epsilon \rangle \sim k_B^T$

Energy resolution: $\Delta E = \sqrt{k_B C(T) T^2}$

Must work at temperatures cryogenic temperatures: 10 ÷100 mK

$$\Delta T = E/C \Rightarrow \text{prefer low}$$

$$C$$

$$C(T) = \gamma T + a T^3 \Rightarrow \text{Prefer dielectric}$$

$$\text{materies}$$

$$\text{lattice}$$

Bolometers are intrinsically slow: signal evolution determined by thermalisation time

TeO₂ 5x5x5 cm³ 0.75 kg

Absorber

- A variety of materials
- from ~0.1 mg to ~1 kg
- Many applications

Sensor

NTD

Neutron Transmutation Doped Termistor

semiconductor with doping level slightly below MIT

$$\alpha = \frac{d \log R}{d \log T} \approx 10$$

Working resistance: $100M\Omega - 1G\Omega$

Wide temperature range

Easier to operate

Slower

Less sensible

TES

Transition Edge Sensor

Superconductor operated around T_c

$$\alpha = \frac{d \log R}{d \log T} \approx 100 \div 1000$$

Working resistance: $10 \text{ m}\Omega - 100 \text{ m}\Omega$

Narrow temperature range

Harder to operate

More sensible

Other sensors: Metallic Magnetic Calorimeters (MMC), Kinetic Inductance detectors (MKID)

Example: CUORICINO

Thermal conductance: PTFE

Heat bath: OFHC Copper

Absorber crystal: TeO₂

•
$$M = 790 g$$

•
$$C = 2 \times 10^{-9} \text{ J/K}$$

Sensor: NTD Ge thermistor

•
$$R = R_0 \exp\left(\frac{T_0}{T}\right)^{1/2}$$

$${}_{0}$$
 = 1 Ω , T_{0} = 3 - 4 K

$$\bullet R = 100 M\Omega$$

•
$$\Delta$$
R = 3 M Ω /MeV, Δ V = 0.3 mV/MeV

Bolometer operation

Select polarization current that maximizes the signal to noise ratio

I_{bol} induces a power dissipation on the bolometer

Balance between input and output power $R(T_{bol})I^2 = G(T_{bol} - T_{bath})$

Amplitde estimation

Optimum filter: maximize signal to noise ratio

Ideal detector response: evaluated by averaging many particle pulses

 $H(\omega) = \frac{S^{*}(\omega)}{N(\omega)} \exp(-j\omega t_{M})$ Time of maximum signal amplitude $V(\omega) = \frac{S^{*}(\omega)}{N(\omega)} \exp(-j\omega t_{M})$

Noise power spectrum: average the noise power spectra of randow waveform samplings not → containing pulses

Riv. Nuovo Cim., vol. 9N1, pp. 1-146, 1986

Energy resolution

Best resolutions with micro bolometers

Bi absorber with TES

Sn absorber with TES

...but also macro bolometers have excellent performances

0.75 kg TeO₂ absorber with NTD sensor

0.8 keV @ 30 keV 1.5 keV @ 351 keV 2.1 keV @911 keV

3.1 keV @ 2.6 MeV 2.8 keV @ 5.4 MeV

Bolometers in neutrino physics

v-mass

- Measure the distortion of the β -decay endpoint induced by the finite v-mass
- Energy region: ~ keV
- Detector mass: O(100 g)
- Single bolometer mass: O(mg)
- (relatively) high counting rate: O(Hz)
- Backgrounds: pile-up with events from the low energy region of the beta spectrum

Double beta decay

- Search for a monochromatic peak at the Q-value of the decay
- Energy region: 2 4 MeV
- Detector mass: O(ton)
- Single bolometer mass O(kg)
- Low counting rate: O(mHz)
- Backgrounds: natural radioactivity, cosmic muons, neutrons

v-mass measurement

Inclusive measurement

- ✓ Measure all energy: E_e+E_{exc}
- X Measure the whole spectrum

Fraction of events in a window
$$\Delta E$$

$$F(\Delta E) = \left(\frac{\Delta E}{E_0}\right)^3$$

Pile-up fraction:
$$f_{pile-up} = A_{\beta} \tau_{R}$$
source activity resolving time

Sensitivity:
$$\Sigma_{90}(m_{\rm v}) \approx \frac{E_0}{\sqrt{N_{\rm B}}} \left[\frac{\Delta E}{E_0} + \frac{3}{10} \frac{E_0}{\Delta E} f_{pile-up} \right]^{1/2}$$

Best ΔE :

- Energy resolution if $f_{pile-up} \ll \frac{\Delta E^2}{E_0^2}$
- $0.55 E_0 \sqrt{f_{pile-up}}$ If pile-up is not negligible

Best limit with spectrometers: m_y < 2 eV Best limit with bolometers: m_v ≤ 15 eV

MARE

Microcalorimeter Arrays for a Rhenium Experiment

Measure Dy de-excitation

¹⁸⁷Re

β-decay:
187
Re \rightarrow 187 Os+ e^- + $^-$ V $_e$

Half life: 4.3 x 10¹⁰ y

E₀: 2.5 keV

MARE @MILANO $6x6 \text{ AgReO}_4 \text{ array}$ m ~ 0.5 mg/pixel ΔE ~ 30 eV τ_b ~ 250 μs

163**Ho** End-point spectral distortion similar to β-decay

Electron capture: 163 Ho+ $e^- \rightarrow ^{163}$ Dy*+ * + *

Half life: 4600 y

Q_{FC}: 2.3 ¿ 2.8 keV

- ✓ Lower half life
- ✓ Better τ_κ
- X Less expertise
- ★ Uncertainty in Q_{EC}

Implant ¹⁶³Ho in bolemter arrays already developed at NIST (x-ray detection for astrophysics)

exposure required for 0.2 eV m_{ν} sensitivity

	CAPOS	ne redam		_ c v, sc	
	A_{β}	$\tau_{_{ m R}}$	$\Delta m{E}$	$N_{\rm ev}$	exposure
	[Hz]	[μ s]	[eV]	[counts]	[det×year]
	1	1	1	0.2×10^{14}	7.6×10^{5}
	10	1	1	0.7×10^{14}	2.1×10^{5}
(10	3	3	1.3×10 ¹⁴	4.1×10 ⁵
	10	5	5	1.9×10^{14}	6.1×10^{5}
	10	10	10	3.3×10^{14}	10.5×10 ⁵

5000 pixels/array

8 arrays 10 years

400 g natRe

exposure required for 0.2 eV m_v sensitivity

$A_{_{eta}}$	$\tau_{_{ m R}}$	$\Delta m{E}$	$N_{\rm ev}$	exposure	
[Hz]	[μ s]	[eV]	[counts]	[det×year]	
1	1	1	2.8×10^{13}	$9.0{ imes}10^{5}$	
1	0.1	1	1.3×10^{13}	4.3×10 ⁵	
100	0.1	1	4.6×10 ¹³	1.5×10 ⁴	
10	0.1	1	2.8×10^{13}	9.0×10 ⁴	
10	1	1	4.6×10 ¹³	1.5×10 ⁵	

5000 pixels/array

3 arrays 1 year

 $\approx 2 \times 10^{17} \, ^{163}$ Ho nuclei

A. NUCCIOTTI - NEUTRINO 2010

Double beta decay

$$(A, Z) \rightarrow (A, Z+2)+2e^{-}(+2v)$$

Measure the sum energy of the electrons

$$\frac{1}{T_{1/2}^{0 \text{ v}}} = \ln 2 \, F_N \frac{m_{\beta\beta}^2}{m_e^2}$$

Knowledge of F_N useful for

- Comparing experiments
- Extracting information on $m_{_{BB}}$

isotope	Q [keV]	Half life limit [y]
⁴⁸ Ca	4271	1.4 x 10 ²²
⁷⁶ Ge	2039	1.9 x 10 ²⁵
⁸² Se	2995	1.0×10^{23}
¹⁰⁰ Mo	3034	4.6 x 10 ²³
¹¹⁶ Cd	2902	1.7 x 10 ²³
¹³⁰ Te	2527	2.8 x 10 ²⁴
¹³⁶ Xe	2479	1.2 x 10 ²⁴
¹⁵⁰ Nd	3367	1.8 x 10 ²²

Half life sensitivity

Future DBD experiments

Experiment	Isotope	Mass [kg]	$\tau^{0\nu}_{1/2}$ [y]	m _{ββ} [meV]	When
CUORE	¹³⁰ Te	200	2×10 ²⁶	35-80	2014-2019
GERDA	⁷⁶ Ge	17 40 1000	3×10 ²⁵ 2×10 ²⁶ 6×10 ²⁷	180-500 70-200 10-40	2010-2012 2012-2014 2015-2025
MAJORANA	⁷⁶ Ge	33 1000	1.5×10 ²⁶ 6×10 ²⁷	70-200 10-40	2012-2013 2015-2025
EXO	¹³⁶ Xe	200 1000	6×10 ²⁵ 8×10 ²⁶	130-190 30-60	2010-2012 2015-2025
SuperNEMO	82Se	100-200	(1-2)×10 ²⁶	40-140	2013-2019
KamLAND-Zen	¹³⁶ Xe	400 1000	4×10 ²⁶ ~10 ²⁷	40-80 25-50	2011-2013 2014-2016
SNO+	¹⁵⁰ Nd	44-120 500	5×10 ²⁴ 3×10 ²⁵	80-130 40-100	2013-2016 2016-2020

CUORICINO detector

Hall A
CUORE and CUORICINO

Located underground @ LNGS: 3650 m w.e. shield again cosmic rays

Data taking from 2003 to 2008

A tower of 62 TeO, crystals

11 floors made of 4 crystals

- not enriched
- Mass: 790g
- Dimensions: 5x5x5 cm³

2 floors made of 9 crystals:

- Mass: 330g
- · Dimensions: 3x3x6 cm3
- 2 enriched in ¹²⁸Te (82%)
- 2 enriched in ¹³⁰Te (75%)

Total mass: 40.7 Kg (11.3 Kg in ¹³⁰Te)

Shieldings

Internal:

→1cm low activity Pb (A < 4 mBq/Kg in ²¹⁰Pb)

eluliigs

→20cm Pb

External:

- →20cm borated polyethylene
- →Anti-Rn box: nitrogen overpressure

Hall C

CUORE R&D facility

CUORICINO performances and results

evaluated on the 2615 keV peak from ²⁰⁸Tl

Crystal Type	$<\Delta E_{\mathrm{FWHM}}>$
$5 \times 5 \times 5 \text{ cm}^3$	$6.3 \pm 2.5 \text{ keV}$
$3 \times 3 \times 6 \text{ cm}^3 \text{ (natural)}$	$9.9{\pm}4.2~\mathrm{keV}$
$3 \times 3 \times 6 \text{ cm}^3 \text{ (enriched)}$	$13.9 \pm 5.3 \text{ keV}$

Bkg at Q-value: 0.17 counts/(keV kg y)

$$T_{1/2}^{0 \text{ v}} > 2.8 \times 10^{24} \, y \ @ 90\% CL$$

 $m_{\beta\beta} < 0.3 \div 0.7 \text{ eV}$

Astropart. Phys. 34 (2011) 822-831

CUORE

- 19 CUORICINO-like towers
- 988 TeO₂ crystals (5x5x5 cm³)
- Mass: 740 kg (200 kg of ¹³⁰Te)
- Bkg goal: 0.01 counts/(keV·kg·y)
- 1 σ half life sensitivity: 1.6 x 10²⁶ y
- m_{ββ} < 41 ÷95 meV

UCLA

CAL POLY

CUORE cryostat

A technological challenge

- Will be the biggest mass ever cooled down to 10 mK
- Strong radioactivity constraints on the cryostat materials
- Calibration: periodically insert Th source wires between detectors
- Multi-stage detector suspension system
- Avoid cryogenic liquids:
 - No 1-k pot
 - No liquid helium bath

CUORE assembly line

Standardized detector assembling procedure

- Handle a large number of detectors
- Improve reproducibility
- Ensure cleanliness

3 main steps

- Sensor gluing
- Tower assembly
- Bonding of sensor wires

CUORE-0

- First tower of CUORE (52 TeO₂ crystals)
- Test the CUORE assembly line
- High statistics check of the radioactive background reduction
- High statistics check of the improvement in uniformity of detectors' response
- Identify operations that are critical for the success of CUORE
- Will be installed in the CUORICINO cryostat
 - Different suspension with respect to CUORE
 - Different shielding with respect to CUORE
- A sensitive double beta decay experiment by itself
- Data taking in 2012

CUORICINO background

Surface alpha contaminations produce a continuous spectrum that extends down to the $\mathsf{Q}_{\beta\beta}$ region

Crystal contamination: double hit

Copper contamination: single hit

Background contributions at $Q_{\beta\beta}$

- 60Co from cosmogenic activation: negligible
- Multi-Compton from ²⁰⁸TI (²³²Th cont. in cryostat shields): ~40%
- Degraded alphas from crystal surfaces: ~10%
- Degraded alphas from Cu holders surfaces: ~50%
- Muon-induced background: negligible

Tests performed in the Hall C R&D facility showed that the alpha background can be reduced by proper cleaning procedures.

The crystal surface contribution is now under control, while the copper surface contribution is still a factor of 4 above the CUORE background goal (10⁻² counts/(keV kg y))

Full CUORICINO energy spectrum

Degraded α's are the main source of background for CUORE

Three towers test

Test performed in 2008: Contemporary measurement of three identical towers in the same cryostat

The only difference was the the Cu cleaning procedure

T2

T3

- Soap
- H₂O₂ + H₂O + citric acid
- Copper covered with 7 layers of polyethylene
- Soap
- 85% phosphoric acid + 5% butanol + 10% H₂O
- · Nitric acid
- $H_2O_2 + H_2O + \text{ citric acid}$

- Chemical erosion
- Electrochemical erosion
- Plasma cleaning

CUORE baseline

How to reduce the background?

Surface/bulk discrimination

Particle discrimination

Surface sensitive bolometers

Cover the main absorber with sensitive elements provided with their own sensor, and discriminate surface/bulk events based on the relative amplitude of the signals

Pulse amplitude (main absorber) [mV]

Potential to discriminate events based on the pulse shape of the main absorber: no need to read surface detectors

Astropart. Phys. 34 (2011) 809-821

Scintillating bolometers

Reduce background exploiting different scintillation properties of α vs β/γ particles

Prefer isotopes with Q-value above 2615 keV (γ background is negligible)

LUCIFER

Low-background Underground Cryogenics Installation For Elusive Rates

Scintillating compounds

PbMoO₄

ZnSe

CdMoO₄

SrMoO₄

CdWO₄

CaF₂

CaMoO₄

 $ZnMoO_4$

3 promising compounds based on scintillation properties and enrichment perspectives

Energy (keV)

Light detector is also a bolometer (Ge slabs)

Energy (keV)

Light vs Heat signal

Energy (γ) keV

Pulse shape discrimination

Some molibdates show the possibility to perform particle discrimination based on the heat signal only! <u>JINST 5 (2010) P11007</u>

CUORE vs LUCIFER

• Isotope: ¹³⁰Te

Compound: TeO₂

ΔE: 5 keV FWHM

Data taking: 5y

Isotope mass: 200 kg

Bkg: 0.01 counts/(keV·kg·y)

Half life sens: 1.6x10²⁶ y

m_{ββ} sens: 41-95 eV

• Isotope: 82Se

Compound: ZnSe

ΔE: 5 keV FWHM

Data taking: 5y

Isotope mass: 17.6 kg

Bkg: 0.001 counts/(keV·kg·y)

Half life sens: 2.3x10²⁶ y

• m_ß sens: 52-65 eV

L. Cardani @ TAUP 20121

Particle discrimination in TeO₂

TeO₂ crystals do not scintillate at cryogenic temperatures

It was pointed out that particle discrimination could be based on cerenkov emission *Eur. Phys. J. C* 65 (2010), p359

Cerenkov threshold:

- 50 keV for electrons
- 400 MeV for alphas

Test with a Sm-doped TeO₂ crystal equipped with a light detector

¹⁴⁷Sm α decay @ 2310 keV (β/γ region)

arXiv:1106.6286

Conclusions

- Bolometers can be built with a large variety of materials
- Absorber masses range from µg to kg
- The energy resolution is excellent
- Slow time response: can be used in experiments with low counting rates
- Bolometers have an important role in v-mass and DBD experiments
- Active background rejection methods are available