# NSI @ colliders?

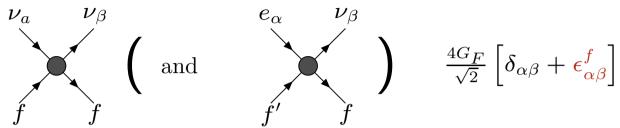
S Davidson, V Sanz

 $arXiv:1108.5320 \longrightarrow PRD$ 

- Intro: what are Non Standard neutrino Interactions?
- (LEP II bounds on contact interactions of charged leptons
   ...can be extrapolated to NSI on electrons (for a class of models)
- NSI at the LHC? IF NSI are contact interactions at LHC energies (!) cross-section is tiny, background even smaller ⇒ LHC will see them?

### Review — SM $\nu$ interactions + NSI

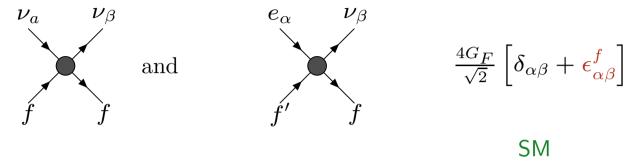
experiment:  $\nu$  interactions, GeV  $\lesssim E_{\nu} \lesssim 50$  GeV:



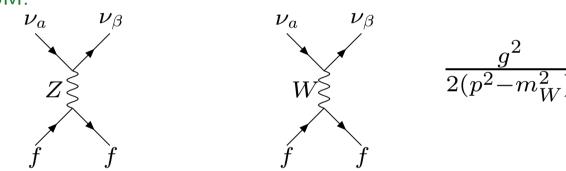
current bounds from  $\nu$  interactions :  $\varepsilon \lesssim 1 \to 10^{-2}$  future  $\nu$  facilities ( $\nu$ Fact) sensitive to  $\varepsilon \gtrsim 10^{-3} - 10^{-4}$ 

### Review — SM $\nu$ interactions

experiment:  $\nu$  contact interactions, GeV  $\lesssim E_{\nu} \lesssim 50$  GeV:



SM:

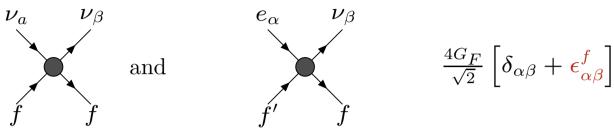


$$\frac{g^2}{2(p^2 - m_W^2)} \,\delta_{\alpha\beta} = -\delta_{\alpha\beta} \,\frac{g^2}{2m_W^2} \left(1 + \frac{p^2}{m_W^2} + \dots\right)$$

W, Z, are gauge bosons  $\Rightarrow$  flavour diagonal couplings (tree level, flavour eigenstate neutrinos)

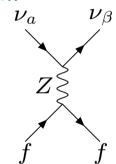
#### Review — SM $\nu$ interactions + NSI

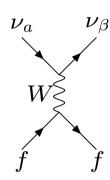
experiment:  $\nu$  contact interactions, GeV  $\lesssim E_{\nu} \lesssim 50$  GeV:



SM + NSI







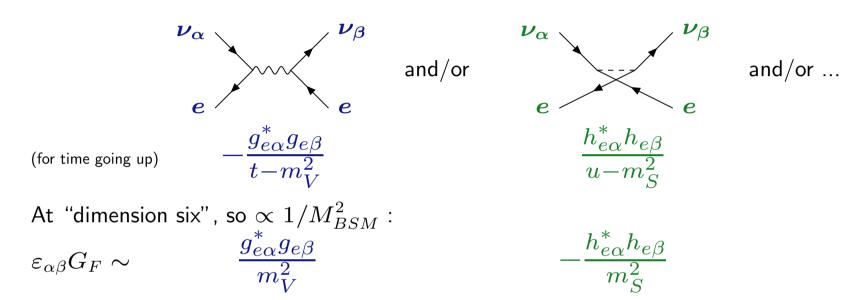
$$\frac{g^2}{2(p^2 - m_W^2)} \, \delta_{\alpha\beta} = -\delta_{\alpha\beta} \, \frac{g^2}{2m_W^2} \left( 1 + \frac{p^2}{m_W^2} + \dots \right)$$

W,Z, are gauge bosons  $\Rightarrow$  flavour diagonal couplings (tree level, flavour eigenstate neutrinos)

NSI: add particles from Beyond the SM (BSM), with  $M>m_W$  (majorana masses  $\Rightarrow$  heavy (?) BSM)

# Review — adding BSM that generates NC NSI, at dim six

 $\bullet$  To obtain NC NSI on electrons  $\sim \varepsilon^e_{\alpha\beta} G_F(\overline{\nu}_\beta \gamma^\mu \nu_a)(\overline{e}\gamma_\mu e)$  ,



# Review — challenges for BSM that generates NC NSI at dim 6

ullet To obtain NC NSI on electrons  $\sim arepsilon_{lphaeta}^e G_F(\overline{
u}_eta\gamma^\mu
u_a)(\overline{e}\gamma_\mu P_R e)$  ,



- : ( electroweak is gauge symmetry (proved by LEP: finite loop predictions were observed), so  $\ell=\begin{pmatrix} \nu \\ e \end{pmatrix}$  bounds on dim. six NSI from non-observation of charged lepton flavour violation
- Avoid charged lepton bounds by assuming NSI arise at dimension *eight*:

$$\frac{1}{\Lambda_8^4} (\overline{e} \gamma^{\rho} P_X e) (\overline{H \ell}_{\alpha} \gamma_r H \ell_{\beta}) \longrightarrow \varepsilon_{\alpha\beta}^{fX} \frac{4G_F}{\sqrt{2}} (\overline{e} \gamma^{\rho} P_X e) (\overline{\nu}_{\alpha} \gamma_r \nu_{\beta})$$

How to get this (at tree level)? Can arrange a cancellation at dim 6.

# Review — BSM that generates NC NSI, at dimension eight

• To obtain dimension eight NC NSI on electrons  $\sim \varepsilon_{\alpha\beta}^e G_F(\overline{\nu}_\beta \gamma^\mu \nu_a)(\overline{e}\gamma_\mu P_R e)$  ,



ullet arrange a cancellation at dim 6: e.g.~S and V exchange, with  $g^2/m_V^2=h^2/(2m_S^2)$ : Gavela et al Antusch etal

$$-\frac{g^2}{m_V^2 - u} (\overline{e} \gamma^{\mu} e) (\overline{\ell} \gamma_{\mu} \ell) \qquad \qquad \frac{h^2}{2(m_S^2 - t)} (\overline{\ell} \gamma^{\mu} \ell) (\overline{e} \gamma_{\mu} e)$$

Then suppose a mass splitting in scalar doublet  $\propto \lambda^2 v^2$ , so cancellation imperfect for  $\nu$  legs. Get

$$\frac{h^2\lambda^2}{m_S^4}(\overline{e}\gamma^{\rho}P_Xe)(\overline{H\ell}_{\alpha}\gamma_rH\ell_{\beta})\sim\varepsilon_{\alpha\beta}^{fX}\frac{4G_F}{\sqrt{2}}(\overline{e}\gamma^{\rho}P_Xe)(\overline{\nu}_{\alpha}\gamma_r\nu_{\beta})$$

NB: masses, scales, coupling constants for dim 8 NSI

if 
$$\frac{4}{\sqrt{2}}G_F\varepsilon = f(h,\lambda,g)\frac{v^2}{m_S^4} \Rightarrow \varepsilon \simeq f(h,\lambda,g)\frac{v^4}{m_S^4}$$

So  $\varepsilon>10^{-4}\Rightarrow {\rm m_S}<2$  TeV (for f=1) If NSI arise at one loop, then  $\varepsilon>10^{-4}\Rightarrow m_S<500$  GeV (for f=1)

# @ the LHC?

Neutral current, dimension eight, NSI on quarks as  $contact\ interactions$  at the LHC

# $\sqrt{s}=14~{\rm TeV}$ — what would NSI look like?

- at  $\nu$  facility energies, have  $\varepsilon_{\alpha\beta}^{qX} \frac{4G_F}{\sqrt{2}} (\overline{q} \gamma^{\rho} P_X q) (\overline{\nu}_{\alpha} \gamma_r \nu_{\beta})$  with  $\varepsilon \gtrsim 10^{-4}$ 
  - 1. if induced at loop,  $\varepsilon \sim v^4/(16\pi^2\Lambda^4) \stackrel{>}{_{\sim}} 10^{-4} \Rightarrow \Lambda \stackrel{<}{_{\sim}} 500$  GeV... LHC should produce the NP in the loop (squarks, etc).
  - 2. if induced at tree level with dim 6 cancellation (Z', scalar + vector leptoquarks, ...), have  $\Lambda \sim m/\lambda \lesssim 2$  TeV. LHC discovery prospects for such particles are model-dep... reach  $\sim 3-5$  TeV??
  - 3. Suppose that NSI are contact interactions at the LHC (? some of the new particles involved are beyond the reach of the LHC e.g.  $\Lambda^4 = M^2 m^2$ , or some couplings  $\gg 1...$ ) can we say anything?

# $\sqrt{s}=14~{\rm TeV}$ — what would NSI look like?

- at  $\nu$  facility energies, have  $\varepsilon_{\alpha\beta}^{qX} \frac{4G_F}{\sqrt{2}} (\overline{q} \gamma^{\rho} P_X q) (\overline{\nu}_{\alpha} \gamma_r \nu_{\beta})$  with  $\varepsilon \gtrsim 10^{-4}$ 
  - 1. if induced at loop,  $\varepsilon \sim v^4/(16\pi^2\Lambda^4) \stackrel{>}{_{\sim}} 10^{-4} \Rightarrow \Lambda \stackrel{<}{_{\sim}} 500$  GeV... LHC should produce the NP in the loop (squarks, etc).
  - 2. if induced at tree level with dim 6 cancellation (Z', scalar + vector leptoquarks, ...), have  $\Lambda \sim m/\lambda \lesssim 2$  TeV. LHC discovery prospects for such particles are model-dep... reach  $\sim 3-5$  TeV??
  - 3. Suppose that NSI are contact interactions at the LHC (!) (? some of the new particles involved are beyond the reach of the LHC -e.g.  $\Lambda^4 = M^2m^2$ , or some couplings  $\gg 1...$ ) can we say anything?
    - appeal to the Equivalence Theorem, and replace  $v \nu_{\alpha} \to W^+ e_{\alpha}^-$ .

### The Equivalence Theorem and NSI as contact interactions at the LHC

- $(\overline{q}\gamma q)(\overline{\nu}_{\alpha}\gamma\nu_{\beta})$  and the LHC?
  - if induced at loop,  $\varepsilon \sim v^4/(16\pi^2\Lambda^4) \stackrel{>}{_\sim} 10^{-4} \Rightarrow$  LHC should produce the NP in the loop (squarks, etc).
  - if induced at tree level with dim 6 cancellation ( Z', scalar + vector leptoquarks, ...), have  $\Lambda \lesssim 2$  TeV. LHC discovery prospects are model-dep... reach  $\sim 3-5$  TeV??
  - Suppose that NSI are contact interactions at the LHC can we say anything?
    - \* appeal to the Equivalence Theorem, and replace  $v\nu_{\alpha} \to W^+e_{\alpha}^-$ .
      - . The Equivalence Theorem relates matrix elements of the unbroken electroweak theory  $(\langle H \rangle = 0)$  to the broken theory
      - $\cdot$  ( ...relativistic W, Z dominated by longitudinal components, who look like goldstones...)
      - · In a gauge invariant dim 8 NSI operator

$$H\ell_{\alpha} = H_0\nu_{\alpha} - H_+e_{\alpha}$$

so... 
$$\nu_{\alpha}v \to W^+e_{\alpha}$$
.

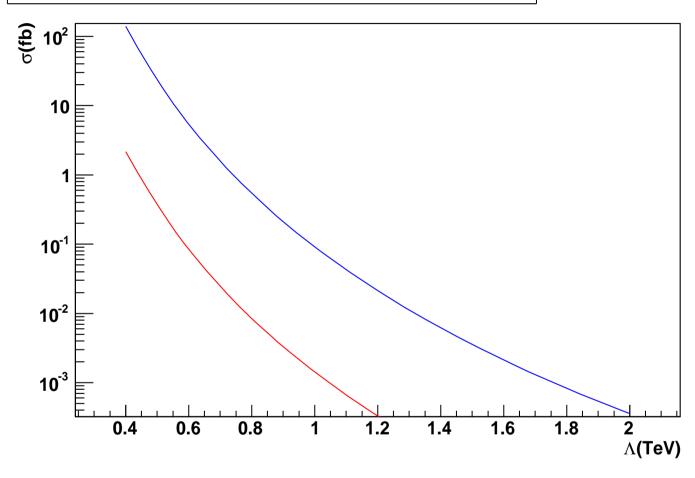
# The cross-section $\to W^+W^-e^\pm_\alpha e^\mp_\beta$ corresponding to NSI on quarks

- $(\overline{q}\gamma q)(\overline{\nu}_{\alpha}\gamma\nu_{\beta})$  and the LHC?
  - Suppose that some of the new particles involved are beyond the reach of the LHC ( $\Lambda^4 = M^2 m^2$ , or some couplings  $\gg 1...$ ) can we say anything?
    - \* appeal to the Equivalence Theorem, and replace  $v\nu_{\alpha} \to W^+L_{\alpha}^-$ .
    - \* dim analysis suggests (and can calculate in Eq Thm limit)

$$\sigma(pp \to W^+W^-e_{\alpha}^+e_{\beta}^-) \sim \int pdfs \times \frac{\hat{s}^3}{\Lambda_8^8} \times massless \ 4 - bdy \ phase \ space$$

$$\sim 10^{-3} \ \text{fb} \frac{\varepsilon^2}{(10^{-4})^2}$$

 $\sigma$ (W+W-I+I-) from NSI at LHC(b = 14, r = 7), CTEQ10 (Q=100 GeV)



$$arepsilon = rac{v^4}{\Lambda^4}$$
 ,  $arepsilon = 10^{-4}$  for  $\Lambda = 10v$ 

# Ack—cross-section, backgrounds...:(

- $(\overline{q}\gamma q)(\overline{\nu}_{\alpha}\gamma\nu_{\beta})$  and the LHC?
  - Suppose that some of the new particles involved are beyond the reach of the LHC ( $\Lambda^4 = M^2m^2$ , or some couplings  $\gg 1...$ ) can we say anything?
    - \* appeal to the Equivalence Theorem, and replace  $v\nu_{\alpha} \to W^+L_{\alpha}^-$ .
    - \* dim analysis suggests

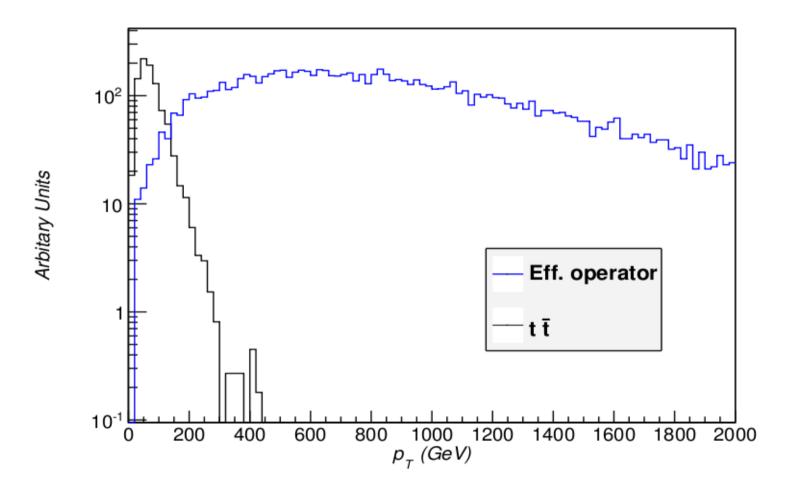
$$\sigma(pp \to W^+W^-\tau^+e_{\beta}^-) \sim 10^{-3} \text{ fb} \frac{\varepsilon^2}{(10^{-4})^2}$$

\* Ack : backgrouunds... $\sigma(pp \to t\bar{t}) \sim {\sf nb} = 10^6$  fb.

$$(pp \to W^+W^-b\overline{b}) imes rac{1}{200} \longrightarrow (pp \to W^+W^-be_{\beta}^-)$$

Ack.

### EurEEka ! $p_T$ distribution of final states very different... :)



 $3\times 10^6$  NLO  $t\bar{t}$  events: require 3 leptons  $(e,\mu)$  of  $p_T>400$  GeV,  $\leq 10$  events survive Eq Thm caln of  $\sigma(pp\to WWe_ae_b)$ : same cuts, 70% of NSI events survive. This works so well, we "anticipate" it works for  $\tau$ s (i.e. withouth the  $3\ell$  cut)

# **Summary**

NSI are dimension 8 contact interactions

$$\varepsilon 2\sqrt{2}G_F(\overline{f}\gamma f)(\overline{\nu}_{\alpha}\gamma\nu_{\beta}) \sim \frac{1}{\Lambda^4}(\overline{f}\gamma f)(\overline{\ell}_{\alpha}H^{\dagger}\gamma H\ell_{\beta}) \quad \Rightarrow \varepsilon = \frac{v^4}{\Lambda^4}$$

for  $f \in \{e, u, d\}$ . Can obtain these operators without dangerous dim 6 operators: -via tree level NP such that the dim 6 coefficients are absent/cancelled (in loops)

- If NSI are contact interactions at the LHC:
  - the cross-section is tiny, but
  - the final state, of several  $p_T \gtrsim 500$  GeV objects, appears background-free? Could even see NSI involving  $\tau$ s?

Sensitive to  $\varepsilon \gtrsim 3 \times 10^{-2}/\sqrt{\mathcal{L} fb}$  (assuming background-free) ( If NSI mediators are within LHC reach, maybe it finds them?)

- suppose charged lepton NSI  $(\overline{e}\gamma e)(\overline{\nu}_{\alpha}\gamma\nu_{\beta})$  induced at tree level
  - if coefficients of dangerous dimension 6 operators vanish due to a cancellation, at dimension
     8 should appear double derivative 4-charged-lepton operators (as well as NSI):

$$\frac{s}{\Lambda^4}(\overline{e}\gamma e)(\overline{L}_{\alpha}\gamma L_{\beta}) \quad \frac{t-u}{\Lambda^4}(\overline{e}\gamma e)(\overline{L}_{\alpha}\gamma L_{\beta})$$

- bounds from LEP2 on  $e^+e^- \to L^+L^-$  translate, with  $\mathcal{O}(1)$  factors, to  $\varepsilon \lesssim 10^{-2} \to 10^{-3}$ .

# Back to LEP?

# Something new: cancelling charged lepton diagrams only works at zero momentum transfer

ullet To obtain dim eight NC NSI on electrons  $\sim arepsilon_{lphaeta}^e G_F(\overline{
u}_eta\gamma^\mu
u_a)(\overline{e}\gamma_\mu e)$  ,



ullet arrange a cancellation at dim 6: S and V exchange, with  $g^2/m_V^2=h^2/(2m_S^2)$ : Gavela et al Antusch etal

$$-\frac{g^2}{m_V^2 - u} (\overline{e} \gamma^{\mu} e) (\overline{\ell} \gamma_{\mu} \ell) \qquad \qquad \frac{h^2}{2(m_S^2 - t)} (\overline{\ell} \gamma^{\mu} \ell) (\overline{e} \gamma_{\mu} e)$$

and suppose a mass splitting in scalar doublet  $\propto \lambda^2 v^2$ , so cancellation imperfect for  $\nu$  legs.

ullet BUT for  $0 \ll s, t, u \ll m_V^2, m_S^2$ , and  $g^2/m_V^2 = h^2/2m_S^2$ , sum gives

$$-rac{g^2}{m_V^4}\left(u-rac{2g^2}{h^2}t
ight)(\overline{\ell}\gamma^\mu\ell)(\overline{e}\gamma_\mu e)$$

The cancellation of 4-charged-lepton-interaction only works at zero momentum transfer

 $\Rightarrow$  4-charged-lepton dimension 8 contact interaction, with coefficient  $\sim g^2\,\frac{s}{m_S^4}$  ,  $h^2\,\frac{t-u}{m_S^4}$ 

(Recall NSI with coefficient 
$$\sim h^2 \lambda^2 \, \frac{v^2}{m_S^4}$$
)

# **Summary so far**

• are interested in NSI at dimension eight (to avoid charged lepton bouunds), involving two neutrinos (so can give a matter effect in LBL):

$$\frac{1}{\Lambda_8^4} (\overline{e} \gamma^{\rho} P_X e) (\overline{H \ell}_{\alpha} \gamma_r H \ell_{\beta}) \longrightarrow \varepsilon_{\alpha\beta}^{fX} \frac{4G_F}{\sqrt{2}} (\overline{e} \gamma^{\rho} P_X e) (\overline{\nu}_{\alpha} \gamma_r \nu_{\beta})$$

- ullet future facilities could be sensitive to  $arepsilon \gtrsim 10^{-3} 10^{-4}$
- can generate at tree level (its hard to get  $\varepsilon \gtrsim 10^{-3}, 10^{-4}$  at loop), by arranging a cancellation of the dimension six operator
- the imperfect cancellation allows at dimension eight: the NSI operator  $\propto f(g,h,\lambda)v^2/m^4$ , also the charged-lepton operators  $\propto f'(g,h,\lambda)\{s,t-u\}/m^4$
- bounds on charged-lepton operators at  $s \ll v^2$  ( $\mu \to 3e$ ,  $\tau \to 3\ell$ , etc) do not contrain NSI... but at LEPII,  $s \simeq v^2$  ...

#### LEP2

LEP2 set bounds, from  $\sigma$ ,  $A_{FB}$ , on dim six contact interactions (  $\sqrt{s} \geq .85 \times (183 \rightarrow 209) \text{GeV}$ )

$$\pm \frac{4\pi}{\Lambda_{6,\pm}^2} (\overline{e}\gamma^{\mu} P_X e) (\overline{f}_{\alpha} \gamma_{\mu} P_Y f_{\alpha}) \qquad \overline{f}_{\alpha} f_{\alpha} \in \{e^+ e^-, \mu^+ \mu^-, \tau^+ \tau^-\}$$

Translate to dimension 8 double-derivative operators, with same legs but coefficients  $\propto \frac{s}{\Lambda_8^4}, \frac{t-u}{\Lambda_8^4}$  Translate to dimension 8 NSI operators, with coefficient  $\propto \frac{v^2}{\Lambda_8^4}$  by assuming  $\frac{s}{\Lambda_8^4}, \frac{t-u}{\Lambda_8^4} \simeq \frac{v^2}{\Lambda_8^4}$ 

| $(\overline{e}\gamma^{\mu}P_Xe)(\overline{\ell}\gamma_{\mu}P_Y\ell)$ | bound                                              | arepsilon                     |
|----------------------------------------------------------------------|----------------------------------------------------|-------------------------------|
| $e^+e^- \rightarrow e^+e^-$                                          |                                                    |                               |
| XY=LL                                                                | $\Lambda_{6+} \stackrel{>}{_\sim} 10.3~{ m TeV}$   | $\lesssim 3.7 \times 10^{-3}$ |
| LL                                                                   | $\Lambda_{6-} \gtrsim 8.3~{ m TeV}$                | $\lesssim 5.6 \times 10^{-3}$ |
| RL                                                                   | $\Lambda_{6+} \gtrsim 8.8~	ext{TeV}$               | $\lesssim 4.7 \times 10^{-3}$ |
| RL                                                                   | $\Lambda_{6-} \stackrel{>}{\gtrsim} 12.7~{ m TeV}$ | $\lesssim 2.4 \times 10^{-3}$ |
| $e^+e^- \rightarrow \mu^+\mu^-$                                      |                                                    |                               |
| XY=LL                                                                | $\Lambda_{6+} \gtrsim 8.1~	ext{TeV}$               | $\lesssim 5.9 \times 10^{-3}$ |
| LL                                                                   | $\Lambda_{6-} \gtrsim 9.5~{ m TeV}$                | $\lesssim 4.3 \times 10^{-3}$ |
| RL                                                                   | $\Lambda_{6\pm}\gtrsim 6.3~	ext{TeV}$              | $\lesssim 9.1 \times 10^{-3}$ |
| $e^+e^- \rightarrow \tau^+\tau^-$                                    |                                                    |                               |
| XY=LL                                                                | $\Lambda_{6+} \gtrsim 7.9~{ m TeV}$                | $\lesssim 6.2 \times 10^{-3}$ |
| LL                                                                   | $\Lambda_{6-} \gtrsim 5.8~{ m TeV}$                | $\lesssim 1.1 \times 10^{-2}$ |
| RL                                                                   | $\Lambda_{6+} \gtrsim 6.4~	ext{TeV}$               | $\lesssim 9.1 \times 10^{-3}$ |
| RL                                                                   | $\Lambda_{6-} \gtrsim 4.6~{ m TeV}$                | $\lesssim 1.8 \times 10^{-2}$ |

$$\varepsilon = v^4/\Lambda^4$$

Many 
$$\mathcal{O}(1)$$
 factors!!  $\varepsilon_{\alpha\alpha} \lesssim 10^{-2} - 10^{-3}$ 

# **OPAL** — bounds on flavour-changing contact interactions at LEP2!

The OPAL experiment saw one  $e^+e^-\to e^\pm\mu^\mp$  event at  $\sqrt{s}=189-209$  GeV, and published limits on  $\sigma(e^+e^-\to e^\pm\mu^\mp, e^\pm\tau^\mp, \tau^\pm\mu^\mp)$ .

Naively, "no point" in doing LFV at LEP2 because better bounds on dim 6 contact interactions from  $\mu \to 3e, \, \tau \to 3\ell$ .

Gives stronger bounds on double-derivative dimension 8 LFV operators than LEP1 (not competing with the Z peak) or rare decays.

 $\Rightarrow$  calculate  $\sigma$  for double-derivative dimension 8 operators... and get

| $(\overline{e}\gamma^{\mu}P_Xe)(\overline{\ell}\gamma_{\mu}P_Y\ell)$ | arepsilon                     |  |
|----------------------------------------------------------------------|-------------------------------|--|
| $e^+e^- \to e^{\pm}\mu^{\mp}$                                        |                               |  |
| $\forall \ XY$                                                       | $\lesssim 8.7 \times 10^{-3}$ |  |
| $e^+e^- \rightarrow e^{\pm}\tau^{\mp}$                               |                               |  |
| $\forall XY$                                                         | $\lesssim 1.6 \times 10^{-2}$ |  |
| $e^+e^- 	o 	au^\pm \mu^\mp$                                          |                               |  |
| $\forall XY$                                                         | $\lesssim 1.5 \times 10^{-2}$ |  |

# **Summary**

Neutral current NSI can arise as dimension 8 contact interactions

$$\varepsilon 2\sqrt{2}G_F(\overline{f}\gamma f)(\overline{\nu}_{\alpha}\gamma\nu_{\beta}) \sim \frac{1}{\Lambda^4}(\overline{f}\gamma f)(\overline{\ell}_{\alpha}H^{\dagger}\gamma H\ell_{\beta}) \quad \Rightarrow \varepsilon = \frac{v^4}{\Lambda^4}$$

for  $f \in \{e, u, d\}$ . Two ways to obtain these operators without dangerous dim 6 operators:

- with tree level NP such that the dim 6 coefficients are absent/cancelled
- in loops. (?use the quadratic GIM mechanism, suppresses FCNC by making them dim 8...?)
- suppose such NSI on electrons  $(\overline{e}\gamma e)(\overline{\nu}_{\alpha}\gamma\nu_{\beta})$  induced at tree level
  - if coefficients of dangerous dimension 6 operators vanish due to a cancellation, at dimension 8 could appear double derivative 4-charged-lepton operators (as well as NSI):

$$\frac{s}{\Lambda^4}(\overline{e}\gamma e)(\overline{L}_{\alpha}\gamma L_{\beta}) \quad \frac{t-u}{\Lambda^4}(\overline{e}\gamma e)(\overline{L}_{\alpha}\gamma L_{\beta})$$

- Bounds from LEP2 on  $e^+e^- \to L^+L^-$  translate to  $\varepsilon \lesssim 10^{-2} \to 10^{-3}$ .