

The T2K experiment status

Macaire Michaël

GDR neutrino

LAPP, Annecy-le-vieux

29/11/2011

Outline:

- The T2K experiment setup
- v_e appearance results
- v_{μ} disappearance results
- Future plans

T2K physics goals

□ Search for $\nu_{\mu} \rightarrow \nu_{e}$ oscillations (measurement of θ_{13})

$$P_{\nu_{\mu} \to \nu_{e}} \approx \sin^{2}(\theta_{23}) \sin^{2}(2\theta_{13}) \sin^{2}(1.27 \frac{\Delta m_{31}^{2} L}{E})$$

• Expected sensitivity with full T2K proposal statistics $(3.75 \text{ MW} \times 10^7 \text{ s})$

$$\sin^2(2\theta_{13}) > 0.008$$

- Non-zero θ_{13} is crucial for leptonic CP violation and mass hierarchy measurement in LBL experiments
- □ Precise measurement of Δm^2_{23} and $\sin^2(2\theta_{23})$ via ν_u disappearance

$$P_{\nu_{\mu} \to \nu_{\mu}} \approx 1 - \sin^2(2\theta_{23}) \sin^2\left(1.27 \frac{\Delta m_{23}^2 L}{E}\right)$$

• Expected sensitivity with full T2K proposal statistics $\delta(\Delta m^2_{23}) \sim 1 \times 10^{-4} \text{ eV}^2$ and $\delta(\sin^2 2\theta_{23}) \sim 1\%$

• THE BEAM

- > JPARC accelerator delivers 30 GeV protons for collision on carbon target to create conventional v_{μ} beam
- > First *OFF-AXIS* long-baseline experiment
- Narrow spectrum at ~600 MeV (oscillation maximum)
 □ At this energy, interactions are mainly CCQE (clear signal, good approx. of reconstructed E_v)
 - □ High energy background is reduced

- THE BEAM
- THE NEAR DETECTORS
- > On-Axis **INGRID**:
 - \Box Measure the direction and intensity of the v_{μ} beam
 - □ 16 scintillator/iron modules
 - □ Requirement for beam stability < 1mrad</p>

• THE BEAM

• THE NEAR DETECTORS

- > On-Axis INGRID
- > Off-Axis ND280:
 - □ To characterize the beam before oscillation (flux, spectrum, composition, cross section measurement)
 - Multiple subdetectors

(POD+ECal, SMRD, Tracker+ECal)

Tracker composed of **2 FGDs** between **3 TPCs**: provides 1+1 tons of scintillator (+water) target and tracking and PID

□ Subdetectors embedded in UA1 magnet providing a ~0.2 Tesla magnetic field

- THE BEAM
- THE NEAR DETECTORS
- > On-Axis INGRID
- > Off-Axis ND280
- THE FAR DETECTOR
- > Super Kamiokande:
 - □ 50 kT water Cherenkov detector
 - □ Excellent e/μ discrimination (mis-id < 1%)

Data taking

- Physics data taking started in January 2010 ended on March 11th 2011
- At the end of Run 2, stable operation at 145 kW was achieved
- Run1 + Run 2 total dataset : 1.43x10²⁰ POT (protons on target)
 This amount of data represents 2% of T2K's proposal goal
- All physics datasets are used in the analyses

Flux prediction

- Beam prediction based on the data of pion production from the NA61 experiment (CERN)
- Systematic uncertainty evaluated in each (p,θ) bin typically 5-10%
- Kaon production, pions outside the NA61 acceptance, and other target interactions modeled with FLUKA

31 GeV/c protons on carbon target; 2007 data

Near detector measurement indicates ν_e intrinsic contamination < 2% at 90% CL

Flux[/10²¹ POT/cm²/50MeV]

Oscillation analysis strategy

Compute the number of expected events at the far detector

SK events by MC simulation

- Calculated based on flux prediction
- Depends on the cross sections predictions, detector efficiencies, and given oscillation parameters

Normalization by ND

• Data/MC ratio evaluated on the measurement of ν_{μ} inclusive CC interactions in ND280 tracker

$$\frac{N_{ND}^{\mu,data}}{N_{ND}^{\mu,MC}} = 1.036 \pm 0.028(stat)^{+0.044}_{-0.037}(syst) \pm 0.038(phys.\,model)$$

Normalization reduces uncertainties on the far detector expectations

v_e appearance

v_e selection

		Expected N_{SK} for $\sin^2 2\theta_{13} = 0.1$				
	Data	BG expectation				Signal
		Total BG	$ u_{\mu}$ CC	v_e CC	NC	$V_{\mu} \rightarrow V_{e}$
Interaction in FV	-	141.3	67.2	3.1	71.0	6.2
FCFV	88	73.6	52.4	2.9	18.3	6.0
Single-ring	41	38.3	30.8	1.8	5.7	5.2
e-like	8	6.6	1.0	1.8	3.7	5.2
E _{vis} > 100 MeV	7	5.7	0.7	1.8	3.2	5.1
No decay-e	6	4.4	0.1	1.5	2.8	4.6
M_{inv} < 105 MeV/ c^2	6	1.9	0.04	1.1	0.8	4.2
E_v^{rec} < 1250 MeV	6	1.3	0.03	0.7	0.6	4.1

6 candidate events pass all cuts

Expected number of events for $sin^2 2\theta_{I3} = 0$

$$N_{SK} = 1.5 \pm 0.3$$
 (syst) events

v_e event distribution

- The selected events are located at large R
- KS test gives 0.03 p-value for such R² distribution

Additionnal checks were performed

- Distribution of events outside FV shows no indication of background contamination
- Distribution of events in OD show no indication of background contamination

v_e appearance results

- Results on appearance published in Phys. Rev. Lett.: PRL, 107 041801 (2011)
- 6 v_e events were observed when null oscillation ($\theta_{13} = 0$) gives 1.5±0.3 expected events
- Fluctuation probability p-value = 0.7%, null oscillation disfavored at 2.5σ

90% C.L. (Feldman-Cousins method) intervals and best fit values (for $\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2(2\theta_{23}) = 1$ and $\delta_{CP} = 0$)

$$0.03 < \sin^2(2\theta_{13}) < 0.28$$

 $\sin^2(2\theta_{13}) = 0.11$

$$0.04 < \sin^2(2\theta_{13}) < 0.34$$

 $\sin^2(2\theta_{13}) = 0.14$

v_{μ} disappearance

v_{μ} selection

		MC w/o oscillation				
	Data	Total	v_{μ} CCQE	ν _μ CC non-QE	$v_{\rm e}$ CC	NC
Interaction in FV	-	243.0	96.5	72.3	3.2	71.0
FCFV	88	165.8	88.9	55.5	3.0	18.3
Single-ring	41	120.5	86.3	26.6	1.9	5.7
μ-like	33	111.9	85.2	24.7	< 0.1	1.9
P _μ > 200 MeV/c	33	111.3	84.9	24.5	< 0.1	1.9
$N(decay-e) \le 1$	31	103.6	84.6	17.2	< 0.1	1.8

31 candidate events pass all cuts

 N_{SK} = 103.6 \pm 10.2 (stat) $^{+13.8}_{-13.4}$ (syst) events expected without oscillation

No oscillation excluded at 4.5σ

v_{μ} oscillation fit

- 2 independent methods were used for the fit (in a 2-flavour oscillation assumption)
- Feldman-Cousins method was used to produce the confidence intervals

Fit A: Unbinned maximum likelihood (w/systematic error fitting) $L = L_{norm} \times L_{shape} \times L_{syst}$

Fit B : Binned likelihood ratio (w/o systematic error fitting) $\chi^2 = 2\Sigma_{bins} \left[n_i^{obs} . ln(n_i^{obs}/n_i^{exp}) + n_i^{exp} - n_i^{obs} \right]$

The results are consistent with SK/MINOS results

Paper in preparation!

T2K near future

- ✓ The March 11th earthquake didn't cause strong damages to the accelerator and the detectors
- ✓ Accelerator status :
 - Magnets and monitors are re-aligned
 - Goal to restart at 100 kW
- ✓ The near detector is under maintenance at the moment
 - All subdetectors have been tested successfully
- ✓ SK was not damaged by the earthquake

Recommissionning phase

Accelerator recommissioning will start in the middle of December

ND recommissioning will start in the beginning of January 2012

Restart of physics data taking soon after

Expected sensitivity

The main goal remains to establish a non-zero θ_{13} !

Milestone:

10²¹ POT (~500kW.1e7sec) by summer 2013 (before long shutdown)

With this statistics, exclusion of $\theta_{13} = 0$ at 5σ at the best fit value $\sin^2(2\theta_{13}) = 0.11$

Backups

$SK v_e cuts$

6 events - What it means for θ_{13}

Observed 6 Events, with 1.5±0.3 events background at $\theta_{13} = 0$

p-value of 0.7% 2.5σ exclusion

$SK v_{\mu} cuts$

Cut	Events in data
FCFV	88
Only 1 ring	41
μ-like	33
P _μ > 200 MeV	33
Nb decay e- < 2	31

Beam uncertainty

Summary of Beam flux uncertainties on $N^{exp}SK$ for $\sin^2 2\theta_{13}=0$

			N_{SK}^{exp} =	$= N_{ND}^{Data} \times \frac{N_{SK}^{MC}}{N_{ND}^{MC}}$
Source	N_{ND}^{MC}	N_{SK}^{MC}	$\frac{N_{SK}^{MC}}{N_{ND}^{MC}}$	
Pion production	5.7%	5.8%	2.5%	
Kaon production	10.0%	11.0%	7.6%	Hadron production
Nucleon production	5.9%	6.2%	1.4%	& interaction
Production x-section	7.7%	9.4%	0.8%	
Proton beam position	2.2%	0.0%	2.2%	
Beam dir. measurement	2.7%	2.9%	0.7%	
Target alignment	0.3%	0.0%	0.2%	
Horn alignment	0.6%	0.7%	0.1%	
Horn abs. current	0.5%	1.0%	0.3%	
Total	15.4%	16.1%	(8.5%)	

• NA61 Kaon data will be included and precision is expected to be much better

Neutrino interaction uncertainties

v int. cross section uncertainty on N^{exp}_{SK} for $\sin^2 2\theta_{13} = 0$

Source	syst. error on N_{SK}^{exp}
CC QE shape	3.1%
$CC 1\pi$	2.2%
CC Coherent π	3.1%
CC Other	4.4%
$NC 1\pi^0$	5.3%
NC Coherent π	2.3%
NC Other	2.3%
$\sigma(u_e)$	3.4%
FSI	10.1%
Total	(14.0%)

NSK uncertainty

$$N_{SK}^{exp} = R_{ND}^{\mu, Data} \times \frac{N_{SK}^{MC}}{R_{ND}^{\mu, MC}}$$

$$\underbrace{\int \Phi_{\nu_{\mu}(\nu_{e})}^{SK}(E_{\nu}) \cdot P_{osc.}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{SK}(E_{\nu}) \ dE_{\nu}}_{\int \Phi_{\nu_{\mu}}^{ND}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{ND}(E_{\nu}) \ dE_{\nu}}$$

NuE

Source	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$	•
(1) neutrino flux	$\pm~8.5\%$	± 8.5%	Dominated by hadron production uncertainties
(2 near detector	$^{+5.6}_{-5.2}\%$	$^{+5.6}_{-5.2}\%$	ND uncertainties (tracking
(3) near det. statistics	$\pm~2.7\%$	$\pm~2.7\%$	
(4) cross section	$\pm~14.0\%$	$\pm~10.5\%$	\longrightarrow Dominated by FSI and NC $\pi 0$
(5 far detector	$\pm~14.7\%$	$\pm~9.4\%$	x-sec uncertainties
Total $\delta N_{SK}^{exp}/N_{SK}^{exp}$	$^{+22.8}_{-22.7}\%$	$^{+17.6}_{-17.5}\%$	Dominated by ring counting, PID and invariant mass cut
			uncertainties

N^{SK}_{exp.} error table

NuMu

Error source	$\sin^2 2\theta = 1.0, \Delta m^2 = 2.4$	Null Oscillation
SK Efficiency	+10.3% 10.3%	+5.1% -5.1%
Cross section and FSI	+8.3% -8.1%	+7.8% -7.3%
Beam Flux	+4.8% -4.8%	+6.9% -5.9%
ND Efficiency and Overall Norm.	+6.2% -5.9%	+6.2% -5.9%
Total	+15.4% -15.1%	+13.2% -12.7%

Allowed region of $sin^2(2\theta_{13})$ as a function of Δm^2_{23}

Feldman-Cousins method was used

v_e at the near detector

Entries

 $R_{ve/v\mu} = (1.0 \pm 0.7(stat) \pm 0.3(syst))\%$ < 2.0% @ 90% C.L.

v TOF

 $\Delta T_0 = T_{GPS} @SK - T_{GPS} @J-PARC - TOF(\sim 985 \mu sec)$

- 1) Based on our initial assessment of our capability, at the moment T2K cannot make any definitive statement to verify the Opera measurement of the speed of neutrino (Opera Anomaly).
- 2) We will assess a possibility to improve our experimental sensitivity for a measurement to cross-check the OPERA anomaly in the future. Such a measurement with an improved system, however, could take a while to achieve.