Open Hardware Case studies

Conclusions

Open Hardware for CERN's Accelerator Control Systems

J. Serrano, P. Alvarez Sanchez, M. Ayass, A.Boccardi, M. Cattin, C. Gil Soriano, E. Gousiou, S. Iglesias Gonsalvez, G. Peñacoba, E. van der Bij, N. Voumard, T. Włostowski

CERN, Geneva, Switzerland

IN2P3 seminar

Open Hardware Case studies

s Conclusions

Outline

- Overview of Controls Hardware
- 2 Standards for New Designs
 - Bus standards
 - FPGA Mezzanine Card (FMC)
 - Wishbone

Open Hardware

- Open Hardware Intro
- Open Hardware Repository
- CERN Open Hardware Licence

Case studies

- Case study SPEC
- Case study ADC
- Experience with Industry

Conclusions

Open Hardware Case studies

Conclusions

Outline

Overview of Controls Hardware

- Standards for New Designs
 - Bus standards
 - FPGA Mezzanine Card (FMC)
 - Wishbone

Open Hardware

- Open Hardware Intro
- Open Hardware Repository
- CERN Open Hardware Licence

Case studies

- Case study SPEC
- Case study ADC
- Experience with Industry

Conclusions

Open Hardware Case studies

Conclusions

CERN Beams Controls group

Responsible for

- Controls infrastructure for all CERN accelerators, transfer lines and experimental areas
- General services such as machine and beam synchronous timing and signal observation
- Specification, design, procurement, integration, installation, commissioning and operation

Supports

• beam instrumentation, cryogenics, power converters etc.

Software

Linux device drivers, C/C++ libraries, test programs

Open Hardware Case studies

Conclusions

Beams Controls standard kit

Hardware kit

- analog and digital I/O
- level converters, repeaters
- serial links, timing modules

Currently, end 2011

- about 120 module types
- most are custom designed: only 1 in 4 is commercial and proprietary
- 1 in 4 is obsolete

Open Hardware Case studies

Conclusions

Outline

Standards for New Designs Bus standards FPGA Mezzanine Card (FMC) Wishbone Open Hardware Intro Open Hardware Repository **CERN** Open Hardware Licence ۲ ۲ Experience with Industry

Open Hardware Case studies

Conclusions

Bus standards for new designs

Two bus standards

- VME64x
 - 6U, large front-panel space, may use rear transition module
- PICMG 1.3
 - Industrial type PC with the processor on a plug-in board
 - Internal buses PCI Express and PCI

Need for a mezzanine approach

- Functions (e.g. ADC, TDC) are needed for both buses
- Would need twice as many designs, more if additional standards are needed (PXIe, xTCA)

Open Hardware Case studies

Conclusions

Advantages of the carrier/mezzanine approach

Re-use

- One mezzanine can be used in VME and PCIe carriers.
- People know standards, more likely to re-use or design for it.

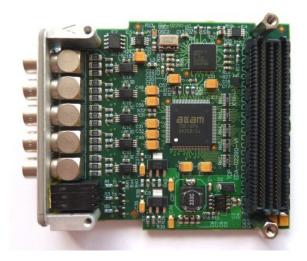
Reactivity

- Carrier: place and route a complex FPGA/Memory PCB once.
- Mezzanine: small and easier to route cards, easy assembly.

Rational split of work

'Controls' can design the carrier, 'Instrumentation' an ADC mezzanine, 'RF' a DDS one, etc.

Overview of Controls Hardware


Standards for New Designs

Open Hardware

Case studies

Conclusions

Example of an FMC mezzanine: 5-channel 1ns TDC

Overview of Controls Hardware


Standards for New Designs

Open Hardware Case

Case studies

Conclusions

Example of a PCI Express FMC carrier (SPEC)

J. Serrano et al Open HW for CERN's Accelerator Control Systems

Open Hardware Case studies

Conclusions

Inside the FPGA: Wishbone

- System becomes pretty complex: System-on-a-chip
- Build up from re-usable HDL cores
- Connect blocks with Wishbone bus
 - open standard
 - simple address/data bus
 - extended with pipelined mode
 - many cores already available
- We developed a design infrastructure
 - scripts to automatically generate Wishbone slave HDL and documentation
 - IP blocks with descriptors to aid driver development
 - support to compile designs with distributed sources
 - library of Wishbone cores

Open Hardware Case

Case studies C

Conclusions

Outline

 FPGA Mezzanine Card (FMC) Wishbone **Open Hardware** 3 Open Hardware Intro Open Hardware Repository CERN Open Hardware Licence ۲ Experience with Industry

Overview of Controls Hardware

Standards for New Designs

Open Hardware Case studies

tudies Cor

Conclusions

There is an OSHW definition!

Check out http://freedomdefined.org/OSHW

- Inspired by the Open Source definition for software.
- Focuses on ensuring freedom to study, modify, distribute, make and sell designs or hardware based on those designs.
- Now we know exactly what we mean when we say OSHW!

Open Hardware Case studies

Conclusions

Why we use Open Hardware

Get a design just the way we want it

We specify fully the design.

Peer review

Get your design reviewed by experts all around the world, including companies!

Design re-use

When it's Open, people are more likely to re-use it.

Healthier relationship with companies

No vendor-locked situations. Companies selected solely on the basis of technical excellence, good support and price.

Open Hardware Case studies

studies Conclusions

Open Hardware Repository – ohwr.org

A web-based collaborative tool for electronics designers

- Wiki, News
- File repository
- Issues management
- Mailing list

Fully open access

All information readable by everyone, without registration

Server made itself of open software

- ChiliProject (a fork of Redmine)
- SVN/GIT for version management, integrated in OHR

Open Hardware Case studies

lies Conclusions

Example of an OHR project

- Detailed project information
- · Subprojects: Software support for the SPEC board
- · Status: Beta
- · Licence: CERN OHL

J. Serrano et al Open HW for CERN's Accelerator Control Systems

Overview of Controls Hardware

Standards for New Designs

Open Hardware Case studies

Conclusions

OHR Status October 2011

Projects

- 46 active projects
 - 38 initiated by CERN groups, 8 by other institutes
- 3.6 developers on average

Types of designs

- About 30 hardware designs (of which 20 FMC projects)
- About 20 re-usable HDL cores
- General tools
 - Production test environment (Python based)
 - ADC performance test

Open Hardware Case studies

Conclusions

CERN FMC projects in OHR – some examples

FMC Carriers

- VME64x (BE/BI), PCIe (BE/CO), AMC (PH/ESE), VXS (BE/RF)
- PXIe likely to come (EN/ICE)

FMC Mezzanines

- ADC's, sampling speeds: 100 kSPS, 100 MSPS
- TDC and Fine delay (resolution 1 ns)
- Digital I/O: 5 channels, 16 channels

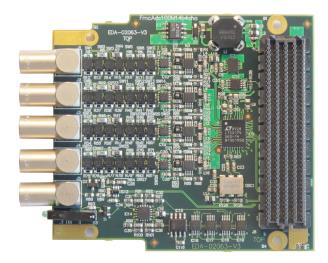
Stimulates collaboration between CERN groups

- VME64x: BE-BI & BE-CO
- TDC: TE-ABT, TE-CRG & BE-CO

Open Hardware

ase studies 0000000000

Conclusions


VME64x FMC carrier

Open Hardware Case studies

Conclusio

FMC mezzanine: 100 MSPS 14-bit 4-channel ADC

J. Serrano et al Open HW for CERN's Accelerator Control Systems

Open Hardware Case studies

es Conclusions

CERN non-FMC projects in OHR – some examples

Hardware

- TTL to NIM level converter (VME)
- White Rabbit timing network switch
- Small footprint ARM-based computer

HDL cores, Software and Tools

- Wishbone cores: DDR3 controller, VME64x core, serialiser...
- RISC Processor core
- Time-to-Digital Converter core
- NanoFIP WorldFIP interface
- Production test environment (Python based)

Open Hardware

Case studies

Conclusions

TTL to NIM converter

J. Serrano et al Open HW for CERN's Accelerator Control Systems

Open Hardware Case s

Case studies C

Conclusions

CERN Open Hardware License – ohwr.org/cernohl

Provides a solid legal basis

- Developed by Knowledge and Technology Transfer Group at CERN
- Open Software licences not usable (GNU, GPL, ...)
- Defines conditions of using and modifying licenced material

Practical: makes it easier to work with others

- Upfront clear that anything you give will be available to everyone
- Makes it clear that anyone can use it for free

Open Hardware

Case studies

Conclusions

CERN Open Hardware License – ohwr.org/cernohl

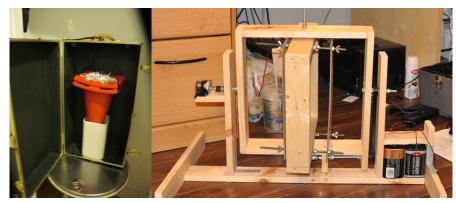
Same principles as Open Software

- Anyone can see the source (design documentation)
- Anyone is free to study, modify and share
- Any modification and distribution under same licence
- Persistence makes everyone profit from improvements

Hardware production

When produce: licensee is invited to inform the licensor

Overview of Controls Hardware


Standards for New Designs

Open Hardware

Case studies

Conclusions

Example of mechanics licenced with the CERN OHL

Worm farm and rotocaster

J. Serrano et al Open HW for CERN's Accelerator Control Systems

Open Hardware

Case studies

Conclusions

Try to use FOSS tools for development

Tools: the last hurdle to sharing

- We already have a forge and a licence.
- Current proprietary CAD tools make it hard to share designs.

Current efforts

- Icarus verilog: help in adding VHDL and SystemVerilog support.
- Kicad: help bring it on par with proprietary tools in terms of features and quality. See http://www.ohwr.org/projects/ohr-meta/wiki/Foss-pcb.

Open Hardware Case

Case studies

Conclusions

Outline

 FPGA Mezzanine Card (FMC) Wishbone Open Hardware Intro Open Hardware Repository **CERN** Open Hardware Licence Case studies Case study – SPEC Case study – ADC Experience with Industry

Conclusions

Open Hardware

Case studies

Conclusions

Case study – SPEC – Simple PCI Express Carrier

We started with a complex design

- Our first FMC carrier design
- Wanted to have lots of timing things on it
- Wanted it to be very flexible: one design does it all

And got results

- We built a few prototypes
- Actually a bit overdesigned, too complex and expensive

Open Hardware

Case studies

Conclusions

Case study – SPEC

PCIe FMC Carrier (PFC)

J. Serrano et al Open HW for CERN's Accelerator Control Systems

Open Hardware

Case studies

Conclusions

Case study – SPEC

Too complex, so we wanted to have a simpler board

- Simple PCI Express Carrier (SPEC)
- Basically remove components from old design
- Optimise with new knowledge and re-layout

Industry got in

- We didn't have time to do the work
- Hired a small company (<15 persons)
- Review, review, review (specifications, schematics, pcb)
- CERN's design office generated final production files
- Used ohwr.org for all documentation

Open Hardware

Case studies

Conclusions

Case study – SPEC: Simple PCI Express FMC carrier

6-layer PCB instead of 12 on the PFC

J. Serrano et al

Open HW for CERN's Accelerator Control Systems

Open Hardware C

Case studies

Conclusions

Case study – SPEC

Make it a testable product

- Developed an FMC connector test card
- Developed a re-usable test environment (using Python)
- Developed go/no-go test suite

Redesign: V1, V1.1, V2, (V3,) V4

• 52 Issues registered and tracked in ohwr!

First series of 70 boards (production, guarantee)

- Solid specification, IPC norms for PCB fab and assembly
- Price Enquiry to 7 **companies** having already PCIe products. First delivery in December 2011.

Open Hardware Cas

Case studies Conclusions

Case study – 100 MSPS 14-bit 4-channel ADC

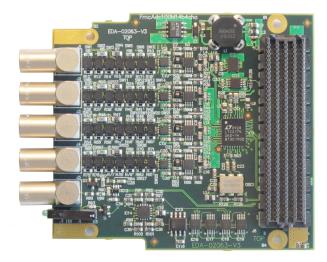
Design

- Design by CERN student
- A small specialist company designed the front-end
- Review, review, review
- Design process well documented (mails, documents)
- 46 Issues documented
- 4 prototype versions, produce V5

CERN Price Enquiry for 40 boards (production, guarantee)

- Price Enquiry to five companies that produce ADC boards
- Useful design feedback (schematics and PCB layout) from company. Delivery in January 2012.

Overview of Controls Hardware


Standards for New Designs

Open Hardware

Case studies

Conclusions

Case study – 100 MSPS 14-bit 4-channel ADC

J. Serrano et al Open HW for CERN's Accelerator Control Systems

Open Hardware Cas

Case studies Conclusions

Case study – 100 MSPS 14-bit 4-channel ADC

Potential users who contacted us

- BPM Linac4 (CERN BE/BI)
- Frame grabber for BSRT emittance meter (CERN BE/BI)
- PSB pick-ups (CERN BE/BI)
- Septum. Booster Trajectory Measurement (CERN TE/ABT)
- OASIS general purpose (CERN BE/CO)
- Italian Hadron Therapy Centre, BPM system (CNAO)
- Agata experiment (INFN, PH/UCM)
- Culham Centre for Fusion Energy (CCFE)
- Advanced Photon Source (Argonne National Laboratory)
- Radio Telescope (Oregan State University)

Open Hardware Case

Case studies Conclusions

Experience with Industry

Product Design

- Needs additional effort to make CERN designs a Product
- Particular effort in reducing Bill of Material
- Automated test bench
- Precise production documentation

Industry and the OH concept

- Open Hardware is new and not always understood
- Need to explain companies the opportunities and risks
- Companies think they compete with assembly companies. We ask only companies that can also support (guarantee, repair, improve)
- Needs time from us and guts from companies

Overview of Controls Hardware

Standards for New Designs

Open Hardware Ca

Case studies Conclusions

Experience with Industry October 2011

Companies used (usually paid for)

- 12 European companies, 1 US company
- 11 projects

Types of work

- Hardware: PCB development, production, HDL development
- Software: device drivers
- Usually small projects (<2 months work), speeds up projects, gets in specialist knowledge
- Small companies can play a large role

Open Hardware Ca

Case studies Conclusions

Experience with Industry

Examples of re-use of work

- Two companies will modify SPEC carrier design
 - larger FPGA (for software radio DSP)
 - PXIe bus instead of PCIe; possibly PXI too (for CERN EN)
- A company re-uses White Rabbit spec for own product
- A company may use nanoFIP for renovating trains

Generates interaction

- One company will help another with product development
- Companies will work together building an ecosystem
 - One sells a carrier, others sell mezzanines
 - One sells a WR switch, others sell WR nodes

Open Hardware Case studies

Conclusions

Outline

Bus standards FPGA Mezzanine Card (FMC) Wishbone Open Hardware Intro Open Hardware Repository **CERN** Open Hardware Licence ۲ ۲ Experience with Industry Conclusions

Overview of Controls Hardware

Standards for New Designs

Open Hardware Case studies

Conclusions

Why we use Open Hardware Does it hold its promises?

Get a design just the way we want it - Yes

With own designers and with outside help (industry, institutes).

Peer review – Yes

From different groups. Also by industry.

Design re-use – Yes

- SPEC and ADC100M have users and lots of interest.
- SPEC design is being copied and re-used in other designs.

Healthier relationship with companies - Yes

- Are much more free to use small companies.
- Not tied to any single company.

Conclusions

Conclusions

- The electronics that we support cannot be black boxes.
- Open Hardware has many advantages.
 - Anyone can help in developments and make improvements.
 - Allows to work differently with industry (design work, smaller companies).
 - Not tied to a single company for production and support.
- CERN Open Hardware Licence provides a legal basis.
- Using standards (VME64x, PCIe, FMC, Wishbone) attracts users and improves re-usability.
- OHR site is practical for engineers and is stimulating.
- OHR site contains many re-usable HDL cores.
- Many designs being developed and several are already produced by industry.
- Almost three years of experience show it works!