THERMAL AND DYNAMIC STRESS IN THE HORN

Benjamin Lepers IPHC Strasbourg

September 20, 2011

Benjamin Lepers

Euronu meeting

September 20, 2011 1 / 15

- Horn geometry
- Model
- Results Thermal
- Results Mechanics
- Fatigue limit
- Conclusion

GEOMETRY - DRAWINGS, V.ZETER

FIGURE: Horn drawings

Benjamin Lepers

Model	Equation	Input	BC	Output
AC/DC	$j\omega\mu\mathbf{H} + \frac{1}{\sigma + j\omega\epsilon}\nabla \times [\nabla \times \mathbf{H}] = 0$	$H_{0\phi} = \frac{I_{rms}}{2\pi r}$	$\mathbf{n} \times \mathbf{E} = 0 \Leftrightarrow H_n = 0$	J, B
	$\sigma_{60} = 2.27 \times 10^7 \frac{S}{m}$			Qav _{emqt}
Thermal	$\nabla \cdot [k \nabla T] + q = 0$	$q = Q_{beam} + Qav_{emph}$	$q'' = \bar{h}[T - T_{\infty}]$	Т
	k = k(T)			
Thermo Mechanical	$ abla \cdot \sigma + \mathbf{F} = 0$	$dF_r = 0$	$u_{plates}(z=0)=0$	u
		$dF_z = 0$		s
linear elast	$\vec{\sigma} = \mathbf{D}\vec{\epsilon}$	α, Τ		
	$\vec{\epsilon} = \epsilon_{th}$			
	$\epsilon_{th} = \mathbf{I}\alpha(T - T_{ref})$			
Transient mechanical	$\epsilon(t), \sigma(t)$	$\mathbf{u}_{tot}(t=0) = \mathbf{u}$	idem	u _{tot} (t)
		$p(r, t) = \frac{\mu i(t)^2}{8\pi^2 r^2}$		s _{tot} (t)
	$\epsilon_{th} = \mathbf{I}\alpha(T - T_{ref})$	0, 1,		

TABLE: Electrical, thermal and mechanical model.

- $l_0 = 350 kA$, $l_{rms} = 10.1 kA$. magnetic pressure corresponding to peak current l_0 .
- About $Q_j = 20 \, kW$ from joule losses and $Q_s = 40 \, kW$ from secondary particles
- Cooling minimum flow rate: 24l/min, will be probably in the range 60-120l/min. (function of the working temperature of the horn)
- axisymmetric model: all variables are function of r and z.

POWER DISTRIBUTION - TEMPERATURE

FIGURE: Power, h coefficients to maintain $60 \degree C$

FIGURE: Power distribution

FIGURE: temperature with $\{h_{inner}, h_{horn}\} = \{1, 1\} \text{ kW/(m}^2\text{K}$

FIGURE: Temperature { h_{inner} , h_{horn} , h_{conv} } = {3.8, 1, 6.5, 0.1} kW/(m²K

THERMAL DILATATION - THERMAL STRESS STATIC

FIGURE: displacement $u_{max} = 1.12$ mm, $T_{max} = {}^{\circ}C$

FIGURE: Von Mises stress $s_{max} = 62$ MPa, $T_{max} = {}^{\circ}C$

Benjamin Lepers

THERMAL DILATATION - THERMAL STRESS STATIC

FIGURE: displacement $u_{max} = 1.12$ mm, $T_{max} = {}^{\circ}C$

FIGURE: Von Mises stress $s_{max} = 62$ MPa, $T_{max} = {}^{\circ}C$

Benjamin Lepers

a) $u_{max} = 1.12 \text{ mm}, t = 79.96 \text{ ms}$

b) Von Mises stress $s_{max} = 62.6$ MPa, t = 79.96 ms

c) u_{max} = 1.12 mm, t = 80 ms

e) $u_{max} = 1.14 \text{ mm}, t = 80.04 \text{ ms}$

f) Von Mises stress $s_{max} = 59.0$ MPa, t = 80.04 ms

FIGURE: Displacement field a) and von mises stress b) due and pulse magnetic pressure.

Ben	iami	in I	er	bers
DUI				

a) Total displacement

b) Von Mises stress

FIGURE: Displacement and stress due to thermal dilatation and magnetic pulse. Corner, conductor segments 1, 2, 3, 5, 6 at locations $\{r, z\} = \{6.6, 6.5\}, \{3.2, 20\}, \{15, 100\}, \{22.3, 148.6\}, \{3.2, 225.8\}, \{30.5, 254.1\}$ cm. The origin is located at 6.8 cm upstream from the inner back plate.

FIGURE: Stress components inside the inner conductor, $\{r, z\} = \{3.2, 20\}$ cm

- thermal static stress about 60 Mpa in the inner waist corner of the horn
- magnetic pressure pulse contributes of about 20 Mpa in the conductor region r = 3 cm (inner conductor and downstream part)
- Fatigue: CNGS design report: take 68 Mpa as a fatigue limit for 10⁸ cycles
- Fatigue design curves of 6061-T6 AI (ASME Boiler and pressure vessel committee): limit of 40 Mpa with no mean initial stress
- 20 Mpa with maximum mean stress effect. (maximum mean stress: intersection with max cyclic stress conditions and Goodman or Gerber fatigue strength relation).
- 10 Mpa for weld junction. (weld reduction factor 2)
- Conclusion: may need to improve the design in the inner waist region of the horn
- Construction: no weld junction in the inner conductors r = 3 cm.

Benjamin Lepers

a) f = 63.3 Hz

b) f = 63.7 Hz

 $FIGURE: \ensuremath{\mathsf{First}}$ six eigenfrequency of the 3D model horn. End back plate is fixed.

Benja	amin Le	pers
-------	---------	------

- stress level low, except in the inner waist corner of the horn: thermal stress is dominant
- magnetic pressure pulse: about 20 MPa in the inner conductor, not negligible
- Fatigue: no fatigue limit for Aluminium, below 40, 50 Mpa would be good
- Eigenmode, eigenfrequency: the inner conductor vibrates at low frequency
- forced periodic excitation
- may need to design some spacers to increase the horn stiffness