Lectures on Neutrino Physics

Fumihiko Suekane
Research Center for Neutrino Science
Tohoku University
suekane@awa.tohoku.ac.jp
http://www.awa.tohoku.ac.jp/~suekane

France Asia Particle Physics School
@Ecole de Physique Les Houchess
18-20/Oct./2011

* This lecture is intended to give intuitive understanding of neutrino physics for students and young physicists of other field.
* I will try to make this lecture to be a bridge between general text books and scientific papers.
* 3 lectures are very short to mention about all the varieties of neutrino physics and only
 limited but important topics are mentioned.

Contents

What is known for neutrinos

PDG2010

Only a few things are known about neutrinos.

There is much room to study.

Neutrino Properties

See the note on "Neutrino properties listings" in the Particle Listings. Mass $m<2 \mathrm{eV}$ (tritium decay) Mean life $/$ mass, $\tau / m>300 \mathrm{~s} / \mathrm{eV}, \mathrm{CL}=90 \%$ Mean life/mass, $\tau / m>7 \times 10^{9} \mathrm{~s} / \mathrm{eV} \quad$ (solar) Mean life/mass, $\tau / m>15.4 \mathrm{~s} / \mathrm{eV}, \mathrm{CL}=90 \%$ (accelerator) Magnetic moment $\mu<0.54 \times 10^{-10} \mu_{B}, \mathrm{CL}=90 \% \quad$ (solar)

Number of Neutrino Types
Number $N=2.984 \pm 0.008 \quad$ (Standard Model fits to LEP data) Number $N=2.92 \pm 0.05 \quad(S=1.2) \quad$ (Direct measurement of invisible Z width)

Neutrino Mixing

The following values are obtained through data analyses based on the 3 -neutrino mixing scheme described in the review "Neutrino Mass, Mixing, and Oscillations" by K. Nakamura and S.T. Petcov in this Review.

```
\mp@subsup{\operatorname{sin}}{}{2}(2\mp@subsup{0}{12}{})=0.87\pm0.03
    \Deltam}\mp@subsup{2}{21}{2}=(7.59\pm0.20)\times1\mp@subsup{0}{}{-5}\mp@subsup{\textrm{eV}}{}{2
    \mp@subsup{\operatorname{sin}}{}{2}(2\mp@subsup{0}{23}{})>0.92[i]
    \Deltam
    \mp@subsup{\operatorname{sin}}{}{2}(2\mp@subsup{0}{13}{})<0.15,CL=90%
```


We call Fermions which do not perform strong nor EM interaction, Neutrinos

v Timeline

 (years are approximate)1899 Discovery of β-decay [Rutherford]
1914β-ray has continuous energy spectrum[Chadwick]
1930 Neutrino hypothesis[Pauli]
1956 1 ${ }^{\text {st }}$ Evidence of neutrino @ reactor [Reines \& Cowan]
1961 Discovery of v_{μ} [Shwartz, Ledermann, Steinberger]
1969~ Deficit of solar neutrino [Davis]
1977 Discovery of τ lepton (indirect evidence of v_{τ}) [Perl]
1985 Proposal of MSW effect [Mikheyev, Smirnov, Wolfenstein]
1987 Detection of neutrinos from SN1987A [Koshiba]
$1989 \mathrm{~N}_{\mathrm{v}}=3$ by Z^{0} shape [LEP]
1995 Nobel prize to Reines
(1996, 1997Claim of $v_{u}->\nu_{e}$ oscillation [LSND])
$19981^{\text {st }}$ evidence of neutrino oscillation by atmospheric v [SuperKamiokande]
2000 Direct evidence of v_{τ}[DONUT]
(2001 Claim of neutrinoless $\beta \beta$ decay [Klapdor])
2002 Nobel prize to Davis \& Koshiba
2002 Flavor transition[SNO]
Reactor Neutrino Deficit[KamLAND]
$2004 v_{\mu}$ disappearance @ Accelerator[K2K]
$2010 v_{u}>v_{\tau}$[OPERA]
2011 Indication of v_{e} appearance @ Accelerator [T2K]

$1^{\text {st }}$ Indication of Neutrino

~1914, an anomaly found
(The 1st anomaly in neutrino which lead great discovery.)
 $\gamma \& \alpha$ decays \rightarrow The energy of the decay particle is unique

However, for β-decays, it is continuous.

Why??
suekane@FAPPS

Neutrino Hypothesis

* Energy conservation low is broken (N.Bohr, 1932)

* β-decay is a 3 body reaction (W.Pauli, 1930)

111018

$$
A \rightarrow B+\beta^{-}+v
$$

$$
E_{\beta}=E_{A}-E_{A^{\prime}}-E_{v}<E_{A}-E_{A^{\prime}}
$$

Neutrino Hypothesis
suekane@FAPPS

4/Dec./1930

Letter from Pauli to participants of a conference.

Dear Radioactive Ladies and Gentlemen,
As the bearer of these lines, to whom I graciously ask you to listen, will explain to you in more detail, how because of the "wrong" statistics of the N and Li^{6} nuclei and the continuous beta spectrum, I have hit upon a deseperate remedy to save the "exchange theorem" of statistics and the law of conservation of energy. Namely, the possibility that there could exist in the nuclei electrically neutral particles, that I wish to call neutrons, which have spin $1 / 2$ and obey the exclusion principle and which further differ from light quanta in that they do not travel with the velocity of light. The mass of the neutrons should be of the same order of magnitude as the electron mass and in any event not larger than 0.01 proton masses> The continuous beta spectrum would then become understandable by the assumption that in beta decay a neutron is emitted in addition to the electron such that the sum of the energies of the neutron and the electron is constant...

I agree that my remedy could seem incredible because one should have seen those neutrons very earlier if they really exist. But only the one who dare can win and the difficult situation, due to the continuous structure of the beta spectrum, is lighted by a remark of my honoured predecessor, Mr Debye, who told me recently in Bruxelles: "Oh, It's well better not to think to this at all, like new taxes". From now on, every solution to the issue must be discussed. Thus, dear radioactive people, look and judge. Unfortunately, I cannot appear in Tubingen personally since I am indispensable here in Zurich because of a ball on the night of 6/7 December. With my best regards to you, and also to Mr Back.

Your humble servant
.W. Pauli
suekane@FAPPS

Expected properties of ν from β-decays

(1) $\mathrm{Q}=0 \longleftarrow$ charge conservation
(2) $s=1 / 2 \longleftarrow$ spin conservation
(3) mass is small if exists \leftarrow maximum energy of β-rays.
(4) Interact very weakly \leqslant lifetime of β-decays.

How v-N cross section was estimated in early days. Fermi's model

Various $\beta^{ \pm}$-decays \& Electron caputure $\rightarrow G_{F} \sim 10^{-11} / \mathrm{MeV}^{2}$
Then, $\sigma\left(\bar{v}+p \rightarrow e^{+}+n\right)=\frac{G_{F}^{2}}{\pi} p_{C M}^{2} \sim 10^{-20}[b]!!$
"I did something a physicist should never do. I predicted something which will never be observed experimentally..". (W.Pauli)
"There is no practically possible way of observing the neutrino" (Bethe \& Peierls, 1934)

Then 30 years had passed

Discovery of v

Very strong v sources are necessary, \leftarrow Chain reactions of nuclear fissions.

Energy release: $\quad \beta$-decays: 200MeV/fission $\sim 6 v /$ fission

$1.9 \times 10^{11} \mathrm{v} / \mathrm{J}$

Reactor or Nuclear Explosion

An early idea to detect v (not realized)

Reines \& Cowan

Free fall to prevent the shock wave.

$$
\begin{aligned}
& \text { Nuclear Explosion } \\
& \text { Vacuum shaft } \\
& \text { Neutrino Detector }
\end{aligned}
$$

Figure 1. Detecting Neutrincs from a Nuclear Explosion Artincutrines from the firetall of a nuclear dowice would Impinge on a liquid scintilation datoctor suspenctod in the hole dug below ground at a distance of about 40 meters fron the 30 -mster-high towor. In the origimal scheme of Rehes and Cowan the antinetitince would induce inverse bota decay, and the detecior would record the postrons procuced in that procoss. The figue wis nation combing of Snitherian |rathean
$=>$ Physicists make use of everything available
While preparing the experiment, they realized nuclear reactor is more relevant to perform experiment. 111018

Then they moved to a Savannah River Reactor

111018
suekane@FAPPS

Principle of v detection

* v flux:
@ 15m from Savannah Liver P reactor core. $(\mathrm{P}=700 \mathrm{MW})$ flux $\sim 5 \times 10^{12} \mathrm{v} / \mathrm{cm}^{2} / \mathrm{s}$
* Detection Principle:

$$
\begin{aligned}
& \bar{v}_{e}+p \rightarrow e^{+}+n \Rightarrow \\
& \qquad\left\{\begin{array}{l}
e^{+}+e^{-} \rightarrow 2 \gamma(0.5 \mathrm{MeV}) \\
n+C d \rightarrow C d^{*} \rightarrow C d+n \gamma(9 \mathrm{MeV})
\end{array}\right.
\end{aligned}
$$

e^{+}	n
$\sim 10 \mu \mathrm{~s}$	
Delay	
Still	

Delayed Coincidence Technique Still used in modern experiments

2 examples of delayed coincidence

http://library.lanl.gov/cgi-bin/getfile?00326606.pdf\#search='delayed\ coincidence\ cadmium\ neutrino'

An episode

At the same time of Reines\& Cowan, R.Davis and L.Alvarez performed neutrino experiment at a Savannah river reactor, too.
Their detection principle was,

$$
v+C l \rightarrow e^{-}+A r
$$

However, they failed to detect positive result.
But this actually means the reactor neutrino (anti neutrino) dose not cause the reaction

$$
v+C l \nrightarrow e^{-}+A r
$$

and neutrino and anti-neutrino are different particles (concept of that time)
Later on, Davis also won Novel prize by detecting solar neutrinos with the same technique.

Lessons : Negative result can be an important signature. : Hanging on is important for success.

Discovery of μ-neutrino

Lederman, Schwarts, Steinberger

* Neutrino Source:
@ Brookhaven AGS $p(15 \mathrm{GeV})+B e \rightarrow \pi+X$

$$
\pi \rightarrow \mu+v
$$

π decays with 21 m decay space. $\frac{\Gamma(\pi \rightarrow e+v)}{\Gamma(\pi \rightarrow \mu+v)} \approx 10^{-4}$
99.99% of neutrinos are associated with muon production

Detection of neutrino

* Target: $90 \times 2.5 \mathrm{cmt} \mathrm{Al} \mathrm{slab}$

Looked for $v=\left\{\begin{array}{l}\mu+X \quad \text { spark chambers }\end{array}\right.$
μ signal => a single track e signal $=>$ EM shower

They observed
34 single track μ events
$22 \mu+X$

6 backgrounds (not like e)
\rightarrow The neutrinos from β-decay and π decay are different particle

τ neutrino
 (2000 DONUT group)

* Production of τ neutrino FNAL TEVATRON

$$
p(E=800 G e V)+W \rightarrow D_{S}^{ \pm}(m=1.97 G e V)+X
$$

Then

$$
D_{S}^{ \pm} \rightarrow \tau^{ \pm}(m=1.78 G e V)+v_{\tau} \quad(B r \sim 4 \%)
$$

$\left\{\begin{array}{l}m_{D_{s}}>m_{\tau} \\ \text { Cabibbo favor }\end{array}\right.$

$$
E_{v} \sim 70 \mathrm{GeV}, \quad \frac{\phi_{v_{\tau}}}{\phi_{v_{e, \mu}}} \sim 0.05
$$

Detection principle

$$
v_{\tau}+A \rightarrow \tau+X
$$

τ decays after ct $\sim 87 \mathrm{um}$,
85% for 1 prong mode
15% for 3 prongs mode.

Look for the "kink"

FIG. 4. Schematic plan view of the spectrometer. The neutrinos are incident from the left, emerging from the passive shield. The design is relatively compact to optimize identification of electrons and muons.

FIG. 3. Schematic plan view of the target region. The emulsion modules are indicated with E labels, the trigger hodoscopes with
T labels. The lighter gray areas are occupied by scintillating fiber planes, 44 in total. The paths of charged particles in a typical interaction are superimposed.

Nuclear Emulsion (~thick camera film)

 position resolution $<1 \mu \mathrm{~m}$ suekane@FAPPSResults (2000)

$4 \pm 0.44 v_{\tau}$ was observed in 1000 neutrino events. (9 9σ significance)
> "We did R\&D for τ-neutrino detection around 1980 but once gave up because it seemed too difficult to success". K.Niwa

Search for neutrino mass

β-decay: absolute v-mass model independent, kinematics status:

$$
m_{v}<2.3 \mathrm{eV}
$$

$$
\text { potential: } \quad m_{v} \approx 200 \mathrm{meV}
$$

e.g.: KATRIN, MARE-II

$0 v \beta \beta$-decay: eff. Majorana mass

model-dependent (CP-phases)
status: $\quad \mathrm{m}_{\beta \beta}<0.35 \mathrm{eV}$ (evidence?)
potential: $\quad m_{\beta \beta} \approx 20-50 \mathrm{meV}$
e.g.: GERDA, CUORE, EXO, SNO+, Majorana, Nemo 3, COBRA, KamLAND-Zen

m_{v}

neutrino mass measurements

Σm_{i}

cosmology: v hot dark matter Ω_{v} model dependent, analysis of LSS data status: $\quad \sum \mathrm{m}_{\mathrm{v}}<0.44 \mathrm{eV}$ (Hannestad et al., JCAPO8(2010)001)
potential: $\Sigma m_{v} \approx 20-50 \mathrm{meV}$ e.g.: WMAP, SDSS, LSST, Planck

111018

Direct neutrino mass detection

electron neutrino

$$
\text { Principle } \quad A \rightarrow B+e^{-}+\bar{v}_{e}
$$

$$
\begin{aligned}
& N\left(p_{e}\right) d p_{e} \propto p_{e}^{2}\left(E_{0}-E_{e}\right)^{2} \sqrt{1-\left(\frac{m_{v}}{E_{0}-E_{e}}\right)^{2}} d p_{e} \\
& E_{e}^{M A X}=E_{0} \rightarrow E_{0}-m_{v} \\
& \text { tritium B-decay and the neutrino rest mass }
\end{aligned}
$$

$$
{ }^{3} H \rightarrow{ }^{3} H e+e^{-}+\bar{v}_{e}
$$

Source: Tritium

$$
\left(Q=18.6 \mathrm{KeV}, \tau_{1 / 2}=12.3 y\right)
$$

$$
\left.\begin{array}{l}
\mathrm{E}_{0}=\text { small } \rightarrow \operatorname{good} m_{v} \text { sensitivity } \\
\text { Lifetime } \rightarrow \text { reasonably short \& long } \\
\mathrm{Z}=\text { small } \rightarrow \text { small correction }
\end{array}\right] \text { ideal isotope to seek for } \mathrm{m}_{v}
$$

From current to future experiments

Mainz:

$m_{v}{ }^{2}=-1.2(-0.7) \pm 2.2 \pm 2.1 \mathrm{eV}^{2}$ $\mathrm{m}_{\mathrm{v}}<2.2(2.3) \mathrm{eV}$ (95\%CL)
C. Weinheimer, Nucl. Phys. B (Proc. Suppl.) 118 (2003) 279
C. Kraus, EPS HEP2003 (neighbour excitations self-consistent)

Troitsk:

$m_{v}{ }^{2}=-2.3 \pm 2.5 \pm 2.0 \mathrm{eV}^{2}$
$\mathrm{m}_{\mathrm{v}}<2.1 \mathrm{eV}$ (95\%CL)
V. Lobashev, private communication (allowing for a step function near endpoint)
aim: improvement of m_{v} by one order of magnitude ($2 \mathrm{eV} \rightarrow 0.2 \mathrm{eV}$)
\rightarrow improvement of uncertainty on $\mathrm{m}_{v}{ }^{2}$ by $100\left(4 \mathrm{eV}^{2} \rightarrow 0.04 \mathrm{eV}^{2}\right)$

statistics:

stronger Tritium source (>>1010 $\beta^{\prime} \mathrm{s} / \mathrm{sec}$)
> longer measurement (~ 100 days $\rightarrow \sim 1000$ days)

energy resolution:

$\Delta E / E=B_{\min } / B_{\max }$
\rightarrow spectrometer with $\Delta \mathrm{E}=1 \mathrm{eV}$
$\underset{111018}{ } \rightarrow$ Ø 10m UHV vessel
suekane@FAPPS

KATRIN: MAC-E filter concept

Magnetic Adiabatic Collimation with Electrostatic Filter

momentum of an electron relative to the magnetic field direction without retarding potential

- adiabatic transport $\rightarrow \mu=E_{\perp} / B=$ const.
- B drops by $2 \cdot 10^{4}$ from solenoid to analyzing plane $\rightarrow \mathrm{E}_{\perp} \rightarrow \mathrm{E}_{11}$
- only electrons with $\mathrm{E}_{\|}>\mathrm{eU}_{0}$ can pass the retardation potential
- Energy resolution $\Delta E=E_{\perp, \max \text {, start }} \cdot B_{\min } / B_{\max }<1 \mathrm{eV}$

KATRIN experiment at KIT

Volker Hannen, TAUP 2011 conference, 7.9.2011

A famous picture

Some KATRIN highlights

\square Wistrălische Winarime 11
Manior

Main spectr. inner wire electrode

- Purpose: - electrostatic shielding of background electrons
- shaping of eletric fields
- removal of trapped particles
- 224 of 248 double layer wire modules installed
- last 24 modules to be installed after preparation of the pump port region in fall 2011
- main spectrometer commissioning spring 2012

[^0][^1]
KATRIN sensitivity \& discovery potential

v_{u} mass limit

Upper limit of the muon-neutrino mass and charged-pion mass from momentum analysis of a surface muon beam
K. Assamagan, ${ }^{4, *}$ Ch. Brönnimann, ${ }^{1,2}$ M. Daum, ${ }^{1}$ H. Forrer, ${ }^{1,3, \dagger}$ R. Frosch, ${ }^{1}$ P. Gheno, ${ }^{1}$ R. Horisberger, ${ }^{1}$ M. Janousch, ${ }^{1,2, \ddagger}$ P.-R. Kettle, ${ }^{1}$ Th. Spirig, ${ }^{1,2,5}$ and C. Wigger ${ }^{1,2}$

$$
\pi(\text { stop }) \rightarrow \mu+v_{\mu}
$$

$$
m_{\pi}=\sqrt{m_{\mu}^{2}+p_{\mu}^{2}}+\sqrt{m_{v}^{2}+p_{\mu}^{2}}
$$

$$
\rightarrow \quad m_{v}=0.34 m_{\pi} \sqrt{1-\frac{p_{\mu}}{p_{\mu}^{0}}}
$$

FIG. 1. Experimental setup. (1) Central trajectory of 590 MeV proton beam; (2) graphite target; (3) central trajectory of muon beam; (4) half-quadrupole magnets; (5) dipole magnets; (6) quadrupole magnets; (7) collimator defining the beam momentum acceptance; (8) concrete shielding of proton channel; (9) crossed-field particle separator; (10) lead collimator; (11) remotely movable collimator system (normally open); (12) magnetic spectrometer; (13) pole of spectrometer; (14) muon detectors (silicon microstrip and single sulode

A precise spectrometer

FIG. 3. The muon spectrometer: (1) magnet yoke; (2) magnet coils; (3) central muon trajectory; (4)-(6) copper collimators $A, B, C ;$ (7) titanium support; (8a) and (8b) cooling water pipes; (9) and (10) NMR probes; (11) lead shielding; (12) vacuum chamber; (13) port for vacuum pump.
@PSI

FIG. 6. Distribution of muons in the microstrip detector for three typical runs. (a) Central muon-beam momentum $29.45 \mathrm{MeV} /$ c, spectrometer field 273.0 mT ; (b) and (c) central muon-beam momentum $29.75 \mathrm{MeV} / c$, spectrometer field 276.0 mT . One microstrip width $(0.05 \mathrm{~mm})$ corresponds to $\Delta p_{\mu}+\infty 0.0021 \mathrm{MeV} / c$. The muon momentum increases to the left. For details, see Sec.

v_{u} mass limit

$$
\begin{gathered}
m_{v}=0.34 m_{\pi} \sqrt{1-\frac{p_{\mu}}{p_{\mu}^{0}}} \\
\delta m_{v_{\mu}} \sim \sqrt{m_{\pi}^{2}-m_{\mu}^{2}}\left(\sqrt{\left.\frac{\delta m_{\pi}}{m_{\pi}}+\sqrt{\frac{1-\left(m_{\mu} / m_{\pi}\right)^{2}}{1+\left(m_{\mu} / m_{\pi}\right)^{2}}} \sqrt{\frac{\delta p_{\mu}}{p_{\mu}}}\right)}\right. \\
\underbrace{\sim 0.15 \mathrm{MeV}}_{\delta m_{\pi}} \oplus \underbrace{49 \mathrm{MeV} \sqrt{\frac{\delta p_{\mu}}{p_{\mu}}}}_{\sim 0.1 \mathrm{MeV}}
\end{gathered}
$$

δm_{π} limits the precision

t neutrino mass limit

$$
e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}
$$

$$
\tau \rightarrow v_{\tau}+X \quad(L E P, C L E O)
$$

$$
\tau \rightarrow v_{\tau}+X \quad(L E P, C L E O)
$$

$$
\text { distribution of } m_{X} \& E_{x}
$$

$$
\frac{d \Gamma}{d m_{X} d E_{X}}=f\left(m_{X}, E_{X} ; m_{v}\right)
$$

\rightarrow obtain most likely m_{v}

Better precision for smaller Q-value, but low statistics,

$$
\tau \rightarrow 5 \pi+v_{\tau} \text { are used. }
$$

PDG average ; $m_{v_{\tau}}<18.2 \mathrm{MeV}(95 \% C L)$

Neutrinos in the Standard Model

$$
\begin{aligned}
& \begin{array}{|l||}
\hline * \mathrm{Q}=0, \\
* \text { No color } \\
* \mathrm{~m}=0, \\
* \mathrm{~s}=1 / 2 \\
* \overline{\boldsymbol{v}} \neq \boldsymbol{v} \\
* \text { only } \nu_{L} \text { exists } \\
\text { (or } \nu_{L} \text { may exist } \\
\text { but it does not } \\
\text { interact at all) } \\
\hline
\end{array} \\
& -i g_{W}\left[\bar{e}_{R} \gamma^{\mu} v_{L}\right] W_{\mu} \int_{v_{L}}^{e_{L}^{-}} g_{W}=\frac{e}{\sqrt{2} \sin \theta_{W}} \sim 1.4 e \\
& -i g_{Z}\left[\bar{v}_{R} \gamma^{\mu} v_{L}\right] Z_{\mu}^{0} \nu_{L} g_{Z}=\frac{e}{\sin 2 \theta_{W}} \sim 1.2 e \\
& \sin ^{2} \theta_{\mathrm{W}} \sim 0.23 \text { (Weinberg angle) }
\end{aligned}
$$

'Helicity' Suppression of π-decay

Experimental fact: $\quad \frac{\Gamma_{\pi \rightarrow e v}}{\Gamma_{\pi \rightarrow \mu \nu}}=1.2 \times 10^{-4}$
How it is explained?

You may say W couple only LH v and RHe.
So that $J(e v)=1$, while pion $\operatorname{spin}=0$
$=>$ violates spin conservation
However, this decay exists if very small. And for $\pi \rightarrow \mu+v$ decay, the spin conservation seems to strongly violated.

Helicity and Chirality

Sometimes Helicity and Chirality are used in confuse. Here they are defined and their relations are discussed.

Dirac equation in free space is,

$$
\left(i \gamma^{u} \partial_{\mu}-m\right) \psi(x)=0
$$

General solution is,

$$
\left.\begin{array}{c}
\psi(x)=\binom{u}{\vec{\eta} \cdot \vec{\sigma} u} e^{i(\vec{p}-E t)}+\binom{-\vec{\eta} \cdot \vec{\sigma} v}{v} e^{i(\vec{p} \vec{x}+E t)} \\
{\left[\vec{\eta} \equiv \frac{\vec{p}}{E+m}, \quad E \equiv+\sqrt{\vec{p}^{2}+m^{2}}, \quad u=\binom{u_{1}}{u_{2}}, \quad v=\binom{v_{1}}{v_{2}}\right.}
\end{array}\right]
$$

Now we take initial condition as positive energy and $\vec{p}=(0,0, p)$

$$
\psi(0)=\binom{u}{\eta \sigma_{z} u}
$$

Helicity is the spin component to the direction of the movement.

If the movement is along the z -direction, helicity components are,

$$
\left\{\begin{array}{l}
\psi_{R} \equiv \frac{1}{2}(1+\hat{\vec{p}} \cdot \vec{\sigma}) \psi=\frac{1}{2}\left(1+\sigma_{z}\right)\binom{u}{\eta u}=u_{1}\binom{\chi_{1}}{\eta \chi_{1}} \\
\psi_{L} \equiv \frac{1}{2}(1-\hat{\vec{p}} \cdot \vec{\sigma}) \psi=\frac{1}{2}\left(1-\sigma_{z}\right)\binom{u}{-\eta u}=u_{2}\binom{\chi_{2}}{-\eta \chi_{2}}
\end{array}\right.
$$

These helicity states show actual spin direction.
Here after we call Right(Left) handed Helicity $=$ RH (LH)

What W couples to: Chirarity

W couples to negative Chirality (NC) particle and positive Chirality (PC) state anti-particle.

Chirality components of ψ is defined by,

$$
\psi_{ \pm} \equiv \frac{1}{2}\left(1 \pm \gamma_{5}\right) \psi=\frac{1}{2}\left(\begin{array}{cc}
1 & \pm 1 \\
\pm 1 & 1
\end{array}\right)\binom{u}{\eta \sigma_{z} u}=\frac{1 \pm \eta \sigma_{z}}{2}\binom{u}{ \pm u}
$$

For $\mathrm{m} \rightarrow 0, \eta \rightarrow 1$ and

$$
\psi_{ \pm}=\frac{1 \pm \eta \sigma_{z}}{2}\binom{u}{ \pm u} \xrightarrow{m=0} \frac{1 \pm \sigma_{z}}{2}\binom{u}{ \pm u}=\psi_{R / L}
$$

For high energy, the helicity and chirality are same and sometimes they are confused.
For low energy, NC has RH component.

In $\pi^{-} \rightarrow e^{-} v$ decay, e^{-}is NC state and v is PC state.
Then the The RH component of electron in the π decay is,

$$
\psi_{R-}=\frac{1}{2}(1+\hat{\vec{p}} \cdot \vec{\sigma}) \psi_{-}=\frac{(1-\eta)}{4}\left(1+\sigma_{z}\right)\binom{u}{-u}
$$

So that the probability which is RH is,

$$
\left|\psi_{R-}\right|^{2}=\frac{(1-\eta)^{2}}{8}\left[u^{\dagger}\left(1+\sigma_{z}\right) u\right]=\frac{\gamma}{\gamma+1} \frac{(1-\beta)}{2}\left|u_{1}\right|^{2} \xrightarrow{m / E \ll 1}\left(\frac{m^{2}}{4 E^{2}}\right)\left|u_{1}\right|^{2}
$$

This means the electron has right handed component with probability

$$
P \propto\left(m_{e}^{2} / 4 E_{e}^{2}\right) \sim 1.3 \times 10^{-5}
$$

This conserve spin

$$
\pi^{-}
$$

For muon case, $m_{\mu} / E_{\mu_{\text {suekane@FAPPS }}^{\sim}}^{\sim 1}$ and the suppression is not strong.
$\begin{aligned} & \text { Taking into account the phase } \\ & \text { space the theoretical prediction is }\end{aligned} \frac{\Gamma_{\pi \rightarrow e v}}{\Gamma_{\pi \rightarrow \mu v}}=\left(\frac{m_{e}}{m_{\mu}}\right)^{2}\left(\frac{m_{\pi}^{2}-m_{e}^{2}}{m_{\pi}^{2}-m_{\mu}^{2}}\right)=1.28 \times 10^{-4}$ while observation is

Likewise for K decay, $\quad \frac{\Gamma_{K \rightarrow e v}}{\Gamma_{K \rightarrow \mu \nu}}=\left(\frac{m_{e}}{m_{\mu}}\right)^{2}\left(\frac{m_{K}^{2}-m_{e}^{2}}{m_{K}^{2}-m_{\mu}^{2}}\right)=2.4 \times 10^{-5}$
while observation is

neutrino flavor counting using Z^{0}

The width of the $\mathrm{Z}^{0}: \Gamma$ is inverse of the lifetime of $\mathrm{Z}^{0}: \tau$
The lifetime is proportional to inverse sum of decay width.

$$
\frac{1}{\Gamma_{Z}}=\tau=\frac{1}{\Gamma_{Z \rightarrow u \bar{u}}+\Gamma_{Z \rightarrow d \bar{d}}+\cdots+\Gamma_{Z \rightarrow v_{v_{v}}}}
$$

If the number of neutrino flavors is n_{v},

$$
\Gamma_{Z}=6 \Gamma_{U}+9 \Gamma_{D}+3 \Gamma_{L}+n_{v} \Gamma_{v}
$$

$\Gamma_{v} \propto 1, \quad \Gamma_{L} \propto 1-4 x_{w}+8 x_{w}^{2}, \quad \Gamma_{U} \propto 1-\frac{8}{3} x_{w}+\frac{32}{9} x_{w}^{2}, \quad \Gamma_{D} \propto 1-\frac{4}{3} x_{w}+\frac{8}{9} x_{w}^{2}$
$x_{w}=\sin \theta_{w} \sim 0.23$

4 experiments at LEP (ALEPH, DELPHI, OPAL, L3) showed $n_{v}=2.984 \pm 0.008$

If $4^{\text {th }}$ neutrino exists $m_{4}>45 \mathrm{GeV}$ or it does not couple to Z^{0}, called sterile neutrino.

v Oscillation: An Introduction

Neutrino oscillation is phenomena in which flavor of neutrino oscillatory changes as time passed by.

If we start from v_{e}, the probability to find v_{u} at time t is expressed as:

$$
P_{v_{e} \rightarrow v_{\mu}}(t)=\sin ^{2} 2 \theta \sin ^{2} \frac{m_{2}^{2}-m_{1}^{2}}{4 E} t
$$

Where m_{2} and m_{1} are masses of energy-eigenstate neutrinos, θ is called mixing angle.
v oscillation is the $1^{\text {st }}$ firm evidence beyond the standard model and its studies are important to understand the nature.

Phenomena of spin- $1 / 2$ for v Oscillation

The formalism of the v oscillation is very similar to that of spin- $1 / 2$ under magnetic field.
So let's review the spin motion as introduction.
The spin motion under magnetic field is described by the Pauli equation:

$$
i \dot{\psi}=\mu \vec{B} \cdot \vec{\sigma} \psi
$$

Where $\vec{B}=\left(B_{x}, B_{y}, B_{z}\right)$ is the magnetic field and μ is magnetic dipole moment of the particle.

This equation was 1 stly introduced empirically by Pauli, and later on obtained by taking non relativistic limit of the Dirac equation with electro-magnetic interaction.

Phenomena of spin- $1 / 2$ for v Oscillation

$$
i \dot{\psi}=\mu \vec{B} \vec{\sigma} \psi
$$

The wave function is a mixture of spin up and down states

$$
\psi(t)=\alpha(t)|\Uparrow\rangle+\beta(t)|\Downarrow\rangle \equiv\binom{\alpha(t)}{\beta(t)}
$$

Here, we think the case that magnetic field is along the x axis.

$$
\vec{B}=(B, 0,0)
$$

Then the Pauli equation becomes

$$
\binom{\dot{\alpha}}{\dot{\beta}}=-i \mu B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\alpha}{\beta}
$$

Phenomena of spin- $1 / 2$ for v Oscillation

$$
\left\{\begin{array}{l}
\dot{\alpha}=-i \mu B \beta \\
\dot{\beta}=-i \mu B \alpha
\end{array}\right.
$$

by taking the delivertive of the $1^{\text {st }}$ equation, and replacing $\dot{\beta}$ by the $2^{\text {nd }}$ equation,

$$
\ddot{\alpha}=-(\mu B)^{2} \alpha
$$

This is the harmonic oscillator and we know the general solution;

$$
\left\{\begin{array}{l}
\alpha(t)=p e^{-i \mu B t}+q e^{i \mu B t} \\
\beta(t)=p e^{-i \mu B t}-q e^{i \mu B t}
\end{array}\right.
$$

Where $p \& q$ are integral constants to be determined by initial condition.

Phenomena of spin- $1 / 2$ for v Oscillation

Then the general spin state is,

$$
\left.\left.\psi(t)=\left(p e^{-i \mu B t}+q e^{i \mu B t}\right) \Uparrow\right\rangle+\left(p e^{-i \mu B t}-q e^{i \mu B t}\right) \|\right\rangle
$$

Now we assume that at $t=0$, the spin pointed upward.

Phenomena of spin- $1 / 2$ for v Oscillation

Then we get specific wave function;

$$
\psi(t)=\cos (\mu B t) \Uparrow \Uparrow\rangle-i \sin (\mu B t) \Downarrow\rangle
$$

This means at later time, $|\Downarrow\rangle$ state is generated with oscillating probability

$$
P_{\Uparrow \rightarrow \Downarrow}(t)=\sin ^{2}(\mu B t)
$$

If we recall that the wave function of the spin, which is in z-y plane and polar angle is θ is

$$
\psi(\theta)=\cos \theta|\Uparrow\rangle-i \sin \theta|\Downarrow\rangle
$$

Physically it corresponds to the precession of the spin, caused by the torque by B and μ.

Phenomena of spin- $1 / 2$ for v Oscillation

$$
\binom{\dot{\alpha}}{\dot{\beta}}=-i \mu B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\alpha}{\beta}
$$

Quantum Mechanically, this is understood as the effect that magnetic field causes transition between $|\Uparrow\rangle \leftrightarrow|\Downarrow\rangle$ with amplitude μB.

We will draw this kind of effect schematically as follows.

The neutrino oscillation can be understood as exactly same manner.

A simple case of v Oscillation

We assume 2 neutrino system; $v_{e} \& v_{\mu}$
The general state is;

$$
\psi_{v}(t)=\alpha(t)\left|v_{e}\right\rangle+\beta(t)\left|v_{\mu}\right\rangle
$$

We assume something makes transition: $\nu_{e} \Leftrightarrow \nu_{\mu}$

$$
\begin{array}{ll}
v_{\mu} & \otimes-v_{e} \\
A_{\mu e} &
\end{array}
$$

Then there are correspondences to the spin case

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\left|v_{e}\right\rangle \Leftrightarrow|\Uparrow\rangle \\
\left|v_{\mu}\right\rangle \Leftrightarrow|\Downarrow\rangle \\
A_{\mu e} \Leftrightarrow \mu B
\end{array}\right. \\
x_{11018}
\end{array}\right.
$$

If the initial state is pure v_{e} state, like beta decay, then

$$
P_{v_{e} \rightarrow v_{\mu}}(t)=\sin ^{2} A_{\mu e} t
$$

This is the very basic of neutrino oscillation.

A simple case of v Oscillation

However, we often see the neutrino oscillation probability as

$$
P_{v_{\mu}}(t)=\underline{\underline{\sin ^{2} 2 \phi}} \sin ^{2} \frac{m_{2}^{2}-m_{1}^{2}}{4 E} L
$$

Where does this come from?
What is the analogy of spin motion?

Still spin-1/2 for v Oscillation

In actual case, mass term has to be included in the Pauli equation

$$
i \dot{\psi}=(m+\mu \vec{B} \vec{\sigma}) \psi
$$

and the most general equation with arbitrary magnetic field is,

$$
\binom{\dot{\alpha}}{\dot{\beta}}=-i\left(\begin{array}{cc}
m+\mu B_{z} & \mu B_{-} \\
\mu B_{+} & m-\mu B_{z}
\end{array}\right)\binom{\alpha}{\beta} ; \quad B_{ \pm} \equiv B_{x} \pm i B_{y}
$$

Spin transition amplitudes are

111018

suekane@FAPPS

Still spin-1/2 for v Oscillation

$$
\binom{\dot{\alpha}}{\dot{\beta}}=-i\left(\begin{array}{cc}
m+\mu B_{z} & \mu B_{-} \\
\mu B_{+} & m-\mu B_{z}
\end{array}\right)\binom{\alpha}{\beta}
$$

This equation has the general form

$$
\binom{\dot{\alpha}}{\dot{\beta}}=-i\left(\begin{array}{ll}
P & Q^{*} \\
Q & R
\end{array}\right)\binom{\alpha}{\beta}, \quad P, R \in \operatorname{Re} a l
$$

Relation between Polar angle θ of the magnetic field and transition amplitudes is,

$$
\tan \theta \equiv \frac{B_{\perp}}{B_{z}}=\frac{2 Q}{R-P}
$$

Still spin-1/2 for v Oscillation

$$
\binom{\dot{\alpha}}{\dot{\beta}}=-i\left(\begin{array}{cc}
P & Q^{*} \\
Q & R
\end{array}\right)\binom{\alpha}{\beta} \quad P, R \in \operatorname{Re} a l
$$

Then the general solution can be expressed using θ as,

$$
\left\{\begin{array}{l}
\alpha(t)=C_{1} \cos (\theta / 2) e^{-i E_{+} t}-C_{2} \cos (\theta / 2) e^{-i E_{-} t} \\
\beta(t)=C_{1} \sin (\theta / 2) e^{-i E_{+} t}+C_{2} \cos (\theta / 2) e^{-i E_{-} t}
\end{array}\right.
$$

where,

$$
\left\{\begin{array}{l}
E_{+}=\frac{1}{2}\left((P+R)+\sqrt{(P-R)^{2}+4|Q|^{2}}\right) \\
E_{-}=\frac{1}{2}\left((P+R)-\sqrt{(P-R)^{2}+4|Q|^{2}}\right)
\end{array}\right.
$$

$$
\tan \theta \equiv \frac{2 Q}{R-P}
$$

(Note: by definition, $E_{+}>E_{-}$)

Still spin-1/2 for v Oscillation

The general wave function is,

$$
\begin{aligned}
\psi(t) & \left.=\left(C_{1} \cos (\theta / 2) e^{-i E_{+} t}-C_{2} \sin (\theta / 2) e^{-i E_{-} t}\right) \Uparrow\right\rangle \\
& \left.+\left(C_{1} \sin (\theta / 2) e^{-i E_{+} t}+C_{2} \cos (\theta / 2) e^{-i E_{-} t}\right) \Downarrow\right\rangle
\end{aligned}
$$

Again we start with

$$
\psi(0)=|\Uparrow\rangle
$$

$$
\tan \theta \equiv \frac{2 Q}{R-P}
$$

$$
\left\{\begin{array} { l }
{ C _ { 1 } \operatorname { c o s } (\theta / 2) - C _ { 2 } \operatorname { s i n } (\theta / 2) = 1 } \\
{ C _ { 1 } \operatorname { s i n } (\theta / 2) + C _ { 2 } \operatorname { c o s } (\theta / 2) = 0 }
\end{array} \Rightarrow \left\{\begin{array}{c}
C_{1}=\cos (\theta / 2) \\
C_{2}=-\sin (\theta / 2)
\end{array}\right.\right.
$$

Still spin-1/2 for v Oscillation

In this case, the specific wave function is

$$
\left.\psi(t)=\left(\cos ^{2}(\theta / 2) e^{-i E_{+} t}+\sin ^{2}(\theta / 2) e^{-i E_{-} t}\right) \Uparrow\right\rangle+\frac{1}{2} \sin \theta\left(e^{-i E_{+} t}-e^{-i E_{-} t}\right)|\Downarrow\rangle
$$

This state corresponds to spin precession within

The time dependent probability of spin-down state is

$$
\begin{aligned}
& P_{\Uparrow \rightarrow \Downarrow}(t)=\left\lvert\, \frac{\sin \theta}{2}\left(e^{-i E_{+} t}-e^{-i E_{-} t}\right)^{2}=\sin ^{2} \theta \sin ^{2} \frac{\mu B t}{\uparrow}\right. \\
& \text { corresponds to the angle between } \\
& \text { the precession plane and } \mathrm{z} \text { axis. }
\end{aligned}
$$

Difference of the energies in the energy eigenstate

Still spin-1/2 for v Oscillation

Look for Energy eigenstate,

Remember the general state

$$
\begin{aligned}
\psi_{v}(t) & \left.=\left(C_{1} \cos (\theta / 2) e^{-i E_{+} t}-C_{2} \sin (\theta / 2) e^{-i E_{-} t}\right) \Uparrow\right\rangle \\
& \left.+\left(C_{1} \sin (\theta / 2) e^{-i E_{+} t}+C_{2} \cos (\theta / 2) e^{-i E_{-} t}\right) \Downarrow\right\rangle
\end{aligned}
$$

If we choose, $C_{1}=1, C_{2}=0$,

$$
\left.\psi_{+}(t)=(\cos (\theta / 2) \Uparrow\rangle+\sin (\theta / 2)|\Downarrow\rangle\right) e^{-i E_{+} t}
$$

This means
is energy eigenstate with energy E_{+}.
Similarly, if we choose, $C_{1}=0, C_{2}=1$,

$$
\psi_{-}(t)=(-\sin (\theta / 2)|\Uparrow\rangle+\cos (\theta / 2)|\Downarrow\rangle) e^{-i E_{-} t} \equiv|-\rangle e^{-i E_{-} t}
$$

Still spin-1/2 for v Oscillation

The spin states $|\Uparrow\rangle,|\Downarrow\rangle$ itselvs are NOT energy eigenstate and do not have definite energy.
(If you try to measure the energy of $|\Uparrow\rangle$ state, you will see 2 energies.)
But the mixed state,

ARE energy eigenstate and have definite energy.
$\theta / 2$ is called mixing angle between energy eigenstate and spin state.
=The mixing angle corresponds to $1 / 2$ of the polar angle of \vec{B}.

[^0]: Volker Hannen, TAUP 2011 conference, 7.9.2011

[^1]: IHU1O suekane@rAPPS

