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Q1.  Where do the following relation come from? 	 

! 

"# $1, "L $1% 4xw + 8xw
2 , "U $1%

8
3
xw +

32
9
xw
2 , "D $1%

4
3
xw +

8
9
xw
2

xw = sin&w ~ 0.23

A1. In the standard model, the couplings of                 are,  	 

! 

Z 0 " ff 

a	
 b (=(a-4Qfxw))	
 Γ/2	


 νe, νµ, ντ	
  1	
 1	
 1	

  e, µ, τ	
 -1	
 -1+4xw	

  u, c, t	
  1	
 1-8/3xw	

  d, s, u	
 -1	
 -1+4/3xw	


! 

LZff = "igZ f # µ a "b# 5( ) f[ ]Zµ
0

! 

"Zff # a 2 + b 2

! 

1" 4xw + 8xw
2

! 

1" 8 3( )xw + 32 9( )xw
2

! 

1" 4 3( )xw + 8 9( )xw
2

è	 
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Q2.  You said     and      are different particle from the Davis's	

        negative result at reactor. But if neutrino is Majorana, they 	

        can be same.   	

	

A1.  Yes. It is exactly the introductory discussion about the 0ν2β 	

        experiment.  To explain this, I will borrow next 3 slides from	

        tomorrows lecture.  What I meant yesterday were that at that 	

        time of the experiment, before the idea of Majorana particle, 	

        the experimental result could be understood so.  	 

! 

"

! 

" 
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 So far neutrino and anti-neutrino are considered ���
to be different particle because �

π+	

n	


e+	


e-	


ν	


! 

" #"

π-	

n	


e-	


e-	


ν	


This takes place.	 

But not this.	 

So that	 

from tomorrows slide -1	 
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Chirality Conservation �

! 

u R a + b" 5( )uL = 0

uL	
 vL	


! 

a+b" 5( )" µ

g/W/Z/G	 

uL	
 vR	


! 

a+b" 5( )" µ

g/W/Z/G	 

For EM, Weak and Strong interactions, the final chiralirty	

is always same as initial chirality	 

from tomorrows slide -2	 
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Another possibility �

π+	
 n	

e+	


e-	

ν	


π-	

n	


e-	


e-	


ν	


The neutrino produced with positron has positive chirarity and can	

not produce negative chirarity electron through weak interaction.	 

So that ν and     are not necessarily different particle 	 

! 

" 

Chirarity conserves	 

Chirarity changes	 

from tomorrows slide -3	 



where, θ is defined in the right figure;	

	

	

	

and	


θ	 

R-P	 
! 

2Q

! 

tan" # 2Q
R$P

! 

E± "
1
2

P+ R( ) ± P # R( )2 + 4Q 2( )
111019	
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Q	

P	
 R	


α	 β	 β	 β	 α	 α	 

The point of  of yesterday's lecture	 

Whatever the a, b are, the time dependent general state is 	 

! 

" t( ) = C1 cos # 2( )e$iE+t $C2 sin # 2( )e$iE$t( )%
+ C1 sin # 2( )e$iE+t +C2 cos # 2( )e$iE$t( ) &



! 

" t( ) = cos2 # 2( )e$iE+t + sin2 # 2( )e$iE$t( )% +
1
2
sin# e$iE+t $ e$iE$t( ) &

! 

P"#$ t( ) =
sin%
2

e&iE+t & e&iE&t( )
2

= sin2% sin2 E+ &E&

2
t

Then the probability we observe         state is 	 
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The point of  of yesterday's lecture	 
If initial condition is pure        state,                   ,  C1=cos(θ/2), 
C2=-sin(θ/2) and  the wave function at later time t is,  	 

! 

"

! 

" 0( ) = #

! 

"

If α, β are neutrino flavor state; νe, νµ, it is called neutrino oscillation.	

If they are spin under magnetic field, it is called spin precession.	 
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If we choose, C1=1, C2=0, we get an energy eigenstate	

	

	

If we choose, C1=0, C2=1, we get another energy eigenstate	

	

	

The relation between the energy eigenstates and the state α,β is 	

	


! 

"+ t( ) = cos # 2( )$ + sin # 2( ) %( )e&iE+t ' + e&iE+t
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The point of  of yesterday's lecture	 

! 

"# t( ) = #sin $ 2( )% + cos $ 2( ) &( )e#iE#t ' # e#iE#t

! 

+

"

# 

$ 
% 

& 

' 
( =

cos ) 2( ) sin ) 2( )
"sin ) 2( ) cos ) 2( )
# 

$ 
% 

& 

' 
( 
*

+

# 

$ 
% 

& 

' 
( 

θ/2 is called mixing angle.	 

That's all. 	 
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Answer to another very good question �

Q3, What is the "magnetic field" of ν oscillation? 	 
A3, We do not know. 	

       It is the very physics we study by ν oscillation (and mass).	

       For the case of quarks (quarks oscillate as well) there are	

       transition amplitudes (T.A.);	


d'	
 s'	
d'	
 d'	
 s'	
 s'	


R	 Q	 P	 

! 

md =
1
2

P+ R( )" P " R( )2 + 4Q 2( )
mu =

1
2

P+ R( ) + P " R( )2 + 4Q 2( )

# 

$ 
% 

& 
% 

The quark masses are generated from the T.A.	 
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We understand the quark masses are generated from the coupling to 	

the Higgs potential.  	

=>  The "magnetic field" of the quark T.A. is the Higgs field.	

	

We may think the "magnetic filed" of ν flavor transition is the Higgs	

field as well. However the coupling constant (mν) is very small	

compared with quark's (mq) and theorists do not like it. Theorists 	

believes there should be other mechanism to generate ν T.A., such 	

as the see-saw mechanism, which naturally explains smallness of mν, 	

while keeping ν T.A. similar size of quark's.	

To study these kinds of things is an ultimate purpose of current 	

neutrino physics.  To do so, experimentalists' mission is to measure the 	

T.A.'s,   to check if           , to measure imaginary component of  T.A. 	

(CP violation), etc. ... And theorists' mission is to explain them and 	

explain our world using the information.	

	

 (I am happy the analogy of spin worked very well so as to lead this explanation)	
! 

" = " 



Back to the ν Oscillation: ν at rest 	 

νµ	
 νe	


Αµe	

mee	


νe	
 νe	


mµµ	


νµ	
 νµ	


We assume there are transition amplitudes between νe and νµ	 

2θ	


mµµ-mee	

! 

2Aµe

Caution!! from now on we define the angle θ as	

  	

         	

	

 just for convention 	

of neutrino oscillation people	 

! 

tan2" #
2Aµe

mµµ $mee

=
2Q
R$P

P	 R	 Q	 
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ν Oscillations: ν at rest 	 

νµ	
 νe	


Αµe	
mee	


νe	
 νe	


mµµ	


νµ	
 νµ	


! 

m" =
mee +mµµ

2
" mee "mµµ( )2 4 + Aµe

2

m+ =
mee +mµµ

2
+ mee "mµµ( )2 4 + Aµe

2

# 

$ 
% 

& 
% 

2θ	


mµµ-mee	

! 

2Aµe

Then the energy eigenstates and their energy can be obtained	

 borrowing spin result 	 

! 

"+

"#

$ 

% 
& 

' 

( 
) =

cos* sin*
#sin* cos*
$ 

% 
& 

' 

( 
) 
"µ

"e

$ 

% 
& 

' 

( 
) 

! 

P "e #"µ( ) = sin2 2$ sin2 m+ %m%

2
t& 

' ( 
) 
* + 
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Mass of νe 	 

! 

"e = cos#"$ + sin#"+

But this wve function means if we measure νe mass, m- is observed 	

with probability cos2θ and  m+ is observed with probability sin2θ. 	

If the experiment does not have enough accuracy to separate m+ and	

m– (and this is always so if we know we measure νe  property) what 	

we observe is the average of them. 	


! 

m"e
= m# cos

2$ +m+ sin
2$ = meeWhat we observe by experiment	 

This title sounds to be a paradoxical  since νe is not 	

mass eigenstate and does not have fixed mass;	 
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m-	 m+	 

cos2θ	 sin2θ	 

Energy resolution	 

# 
of

 e
ve

nt
s	 



Relation between average νe mass and T.A.	 
And likewise 	 

In that sense, we can call the transition amplitudes  mee (mµµ) 	

as "electron (muon) neutrino mass", respectively.	 

! 

m"µ
= m+ cos

2# +m$ sin
2# = mµµ

νµ	
 νe	


Αµe	
mee	


νe	
 νe	


mµµ	


νµ	
 νµ	


νµ	
 νe	


Αµe	


νe	
 νe	


! 

m"e

νµ	
 νµ	


! 

m"µ

If you like, you may re-write. 	 
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Oscillation of relativistic ν�

! 

P "e #"µ( ) = sin2 2$ sin2 E+ %E%

2
t& 

' ( 
) 
* + 

Usually text books explain it starting from  	 

Then because, 	


! 

E± = p2 +m±
2 ~ p2 +

m±
2

2p
" E+ #E#( )t ~

m+
2 #m#

2( )L
2E$2

~ m+
2 #m#

2

2E
L

! 

P "e #"µ( ) = sin2 2$ sin2 %m
2

4E
L

& 

' 
( 

) 

* 
+ 

And finally get the standard formula 	 

But why we can say p is same? 	

What is the E in the final formula? 	

This delivation is based on plain waves. It it OK? 	
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Oscillation of relativistic ν�
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Actually the formalism of oscillation of relativistic neutrino is not easy.	

A prominent theorist said,   	 

There are still some discussions about the theory of neutrino oscillations	

even in vacuum. ..  The issues become important.. where the uncertainty 	

in energy is much smaller than the oscillation frequency. 	

by  A.Y.Smirnov@Neutrino2008, Arxive/hep-ph0810.2668	 

Even nowadays sometimes I see preprints discussing this issue on arXive.	

So probably most of us do not understand it yet. 	 

But experimentalists know neutrino is oscillating by heart from their data.  	

So I would like to push theorists to let us understand it!	
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! 

sin2 m+ "m"

2
t LorentzTrans. @x=#t$ % $ $ $ $ $ sin2 m+ "m"

2
t
&

' 

( 
) 
* 

+ 
, 

If neutrino oscillation at rest is seen from the system which moves with 	

velocity –β with respect to the system,  from Lorentz transformation,  	 

! 

" =
1
1#$2where, Lorenz factor: 	 

Because most of us do not understand it, it may be allowed	

to think of it as following way. 	

It makes an issue of ν oscillation experiment clear. 	 

Oscillation of relativistic ν�
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ν-Oscillation at rest	 



! 

E" = #m", E+ = #m+

From this system the neutrino energy looks as,	 

! 

sin2 m+ "m"

2
t
#

$ 

% 
& 
' 

( 
) 

#=2 E m+ +m"( )* + * * * * sin2 m+
2 "m"

2

4 E
t

! 

" =
E+ +E#

m+ +m#

=
2 E

m+ +m#

Oscillation of relativistic ν�

=> Since we do not know the absolute ν masses, we do not know 	

Lorentz factor γ even if we know the energy. This introduces 	

additional  uncertainty when extracting T.A. from the data.	

(It is not the case for K0 oscillation and quark oscillation.)	 
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! 

sin2 m+ "m"( )m"

2E"

t(It should be OK to use γ=E-/m- and use                                 as well.)  	 



What We Measure by ν Oscillation? 

! 

sin22" =
1

1+ mµµ #mee( )2 4Aµe
2
,

$m2 = mµµ
2 #mee

2( ) 1+ 4Aµe
2 mµµ #mee( )2

% 

& 
' 

( 
' 

2θ	


mµµ-mee	
! 

2Aµe

νµ	
 νe	


Αµe	


mee	


νe	
 νe	


mµµ	


νµ	
 νµ	


⇒ Measurement of mixing angle is as important as measurement of mass. 	

Both mass and mixing are combinations of flavor transition amplitudes.	


! 

P"e#"µ
= sin2 2$ sin2 %m

2

4E
L

Relation between observable and T.A.	 
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! 

mee = m"e

mµµ = m"e

2
+#m2 cos2$

Aµe =
1
2

m"e

2
+#m2 cos2$ % m"e

& 
' 
( ) 

* 
+ tan2$

, 

- 

. 

. 

/ 

. 

. 

If we could measure Δm2, θ, and            all the transition 	

amplitude can be determines.  	 

! 

m"e
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Purpose of ν Oscillation experiments    

H0	

Non Standard Higgs?                     or                      ?  

Sub Structure?? 

να	


Or something else?? 
 ?	


Physics of ν oscillation is to measure the flavor  
transition amplitudes and think of its origin 

Now we know                       exists.  νβ	


! 

" 0

#

$ # 

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 
~
0.7 0.7 0
+0.4 0.4 0.8
0.6 +0.6 0.6

% 

& 

' 
' ' 

( 

) 

* 
* * 

uu 
dd 
ss 

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

d	

d	


s	

s	


G	

For Example, 
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ν Oscillation Experiments so far �
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Atmospheric ν	

  * SuperKamiokande	

  * MACRO	

  * Soudan-2	

	

Accelerator ν  	 
  * LSND  	

  * K2K	

  * T2K	

  * MINIBOONE	

  * MINOS	

  * OPERA	

 	 

Solar ν	

  * Homestake	

  * SAGE	

  * GALLEX/GNO  	

  * SuperKamiokande	

  * SNO	

	

Reacotor ν  	 
  * Chooz  	

  * Paloverde	

  * KamLAND	
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2 oscillations measured	


Murayama	


Atmospheric	

Accelerator	


Solar	

Reactor	


1 upper limit measured	
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How they were measured?	 



 	


νµ	


νµ	
 νe	


 Atmospheric ν �
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 Atmospheric ν anomaly �

! 

" + #µ+ +$µ

µ+ # e+ +$ µ +$e   

! 

"# $µ# + ! % µ

µ# $ e# +%µ +% e

! 

R =
"µ +" µ
"e +" e

~ 2

Observation => R<2  ??	

Atmospheric ν anomaly. 	


Expected.	 

Detect ν from the other side of the Earth. 	

L=2Rcosθ	

=> L dependence of atmospheric ν 	

disappearance.	


θ

L

detector	 

Earth	 

neutrino	 

25	
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 Atmospheric n ���
experiments �

Soudan	


Macro	
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Kajita Nufact04 SI	


1997: 1st Discovery of neutrino oscillation 	

by atmospheric neutrinos	 
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Detection of Atmospheric ν by water cherenkov detector	 

! 

"µ + A#µ + X

µ	 

Clear Cherenkov ring	 
Water	 

! 

"e + A# e+ X
e à EM shower	 

e	 
Blurred Cherenkov ring	 

Water	 
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Kajita, Nufact04 SI	




sin22θ~1	

Δm2~2x10-3eV2	 

3588 cites	

(as of 	

15/Sep/2011)	 

1998	 

(1)Deficit 	

     of νµ	

(2) νe as	

 expected	

	

=νµ àντ 	

Oscillation	

	


(1)	 

νe 	 

νµ	 

(2)	 

111019	
 30	
suekane@FAPPS	




suekane@FAPPS	
 31	


Kajita Fufact04 �

2004	 

Recovery of event 	

rate in L only occurs	

by oscillation.	

Not by one-way 	

processes like decay 	

and decoherence	 

111019	
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Kajita Fufact04	




Long Baseline Accelerator Experiments	

(=high energy νµ beam)	


Kajita, Nufact04 SI	


K2K/T2K	 MINOS	 

(NOVA)	 

OPERA	 
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K2K	

~2004	 

K2K=KEK to Kamioka	 
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tjampens Nufact04	
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How ν beam is generated	 

! 

p+ A"# + : # + "µ+ +$µ

! 

" + # e+ +$e
" + #µ+ +$µ

~10%4 (Helicity Suppression 	

=> Almost pure νµ	 

! 

p+ A" K + + X
p+ A"# + + X

$
K + "# 0 + e+ +%e

K + " all
~ & $ 5%

Main νe contamination comes from    	 
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Synchronization of timing	

=Removal of Backgrounds	 
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K2K result	 

! 

sin2 2" ~1
#m2 = 2.8$0.9

+0.7( )%10$3 eV 2[ ] 90%CL( )

! 

P "µ #"µ( )
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! 

"µ #"µMINOS              oscillation measurement 	 
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MINOS              oscillation measurement 	 

! 

" µ #" µ

! 

"# $% µ + µ# : % µ $% X :% µ + A$µ+ + & X 

! 

" + #$µ + µ+ : $µ #$X :$µ + A#µ% + X

! 

p+ Z" n#$ +m# + + X

Change the polarity 	

of the magnets in 	

the beam line	 

CPT is OK	 

D.Naples@TAUP2011	 
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OPERA �

43	


* Appearance of	

* ντ+X à	 τ+X' and identify τ by nuclear emulsion hybrid detector.	

* Maybe the 1st experiment to confirm appearance.	

(So far all the ν oscillation experiments measured disappearance)	

	

* Difficulty are that the mτ is large and difficult to produce τ 	

   (En>3.5GeV)	

   and that τ is difficult to identify. 	

   It decays to µ or e within 1mm and difficult to separate from 	

   νµ+X à	 µ+X' unless decay vertex is identified. 	

     	 

! 

"µ #"$
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This is more famous�now for OPERA �

It is a great discovery if it is true. But needs independent tests.	 
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Summary of atom. & LBL accel. ν experiments	


Atmospheric	

K2K	


K2K(positive)	


MINOS	


T2K	


! 

sin2 2" ~1, #m2 ~ 2.5$10%3 eV 2[ ]
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Solar ν	

(=low energy νe) �

Production of solar ν	 

! 

4 p+ 2e"

#4He+ 2$e + 26.73MeV "E$

E$ ~ 0.6MeV

ν flux @ Earth	 

! 

J" =
n"
Q
JQ #

2"
26.1MeV

$ 8.56$1011 MeV /cm2 / s[ ] = 6.6$1010 " /cm2 / s[ ]

! 

"c # 150g /cc, Tc # 1.6KeV
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Solar neutrino spectrum �
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Solar Neutrino Experiments	


ν target	
 Eth	
 rate/SSM	

Homestake	
 Cl	
 8B	
 0.31	

GALLEX/GNO	
 Ga	
 pp	
 0.51	


SAGE	
 Ga	
 pp	
 0.53	

SK/Kamiokande	
 H2O	
 8B	
 0.465	

SNO	
 D20	
 8B	
 1 (neutral current)	


Homestake	

SNO	


SAGE	


GNO/GALLEX	


Kamiokande/	

SuperK	




The 1st solar neutrino detection	

& indication of solar ν deficit�

＊Homestake (615ton), (1968~)	


C2Cl4	


R=Data/Prediction ~0.31	 
! 

"e+
37Cl# e$+37Ar

37Ar#37Cl + e$ +"e

111019	
 52	
suekane@FAPPS	




! 

"e+
37Ga# e$+37Ge
Eth = 233KeV( )

Ga experiments �
Issue for Homestake(Cl) experiment.	

à The energy threshold is high and can not detect  pp-ν .	

à Flux very much depends on the detail of fusion process.	

à possilbe ambiguity. 　	 

Low energy threshold and pp-ν can be detected.	

ν flux is independent for detail of the fusion process in the sun	

and reliable prediction of ν flux is possible. 　	 

111019	
 53	
suekane@FAPPS	




GNO/GALLEX	


GNO	


! 

"e+
37Ga# e$+37Ge Eth = 233KeV( )

37Ge#37Ga+ e$ Auger( ) +"e %1 2 ~ 11days( )

(1)  leave GaCl3 target for a few weeks 	

and accumulate GeCl3  in the target. 	

(2) Purge out GeCl4 and dissolve it in 	

water. 	

(3) Detect the β-decay )37Ge->37Ga+e-	

(4) Perform (1)~(3) many times for	

 years. �
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 Results of GNO/GALLEX �

! 

77.5±6.2"4.7
+4.3 SNU( ), R = 0.61( )

＊GALLEX(GALLium EXperiment),	

         (30tons), (1991~)	


! 

GNO+GALLEX Data /Pr ediction = 0.51± 0.04

＊GNO(Gallium Neutrino Observatory),	

           (30->100tons ~2003)	


GALLEX+GNO	


SSM	


GALLEX+GNO	


SSM	
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SAGE(Soviet American Ga Experiment) 1990~	


! 

Data Pr ediction = 0.53"0.040
+0.042

SAGE - The Russian-American Gallium Experiment	


51Cr source 
experiments 

SSM	
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Solar ν detection by electron scattering	

�

  e!

  e!  "e

  "e

  W +

  e!

Z 0

  e!

  "e     "e

＋	 

! 

"#ee
~ 2GF

2meE#

$
1
2

+ xW
% 
& 
' 

( 
) 
* 
2

+
1
3
xW
2

+ 

, 
- 

. 

/ 
0 ~ 0.9110244E# MeV[ ]cm2! 

"e + e# $"e + e#

（Kamokande/SuperKamiokande/SNO）	 

Observe recoiled electron	 

  e!

Z 0

  e!

"µ "µ

! 

"#µe
~ 0.16$10%44E# MeV[ ]cm2

~ 1
6
"#ee

! 

"µ ,#e
$ %"µ ,#e

$
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Recoiled electron energy distribution of Eν=8MeV	 

0

5E-44

1E-43

1.5E-43

0 2 4 6 8 10
  Ee MeV[ ]

    

d!
dEe

cm2 MeV[ ]

    ! "ee#" ee( )

    ! "µ ,$e#" µ ,$e( )

    ! " µ ,$e#" µ ,$e( )

    ! " ee#" ee( )

    E" = 8MeV

  EMAX = 7.75MeV

SK threshold	 
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Solar image	

by neutrinos �
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Is it due to neutrino oscillation？	

Solar model may be wrong.	

è It is important to measure neutral current interaction	

and measure the total (flavor independent) ν flux.	 

For all the experiments, the observed neutrino fluxes 	

are smaller than predicted value. 	 

The solar neutrino anomaly �
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Measure the Neutral Current	 
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Why D2O?	


dd

e,
!e,e,µ,"

nn

pp

ZZ00

NCNNCC !e,e,µ,"

イメージを表示できません。メモリ不足のためにイメージを開くことができないか、イメージが破損している可能性があります。コンピューターを再起動して再度ファイルを開いてください。それでも赤い x が表示される場合は、イメージを削除して挿入してください。

! 

n+ d" t +# 6.25MeV( )

All flavor has same cross section. 	

The total ν flux can be measured	

independently from oscillation. 	

è	 Solar model can be checked. 	 

φe+φµ+φτ	 
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Why D2O?	


dd

!eee
ee

ppp

pp

--

WW++CC

CCCCCC
イメージを表示できません。メモリ不足のためにイメージを開くことができないか、イメージが破損している可能性があります。コンピューターを再起動して再度ファイルを開いてください。それでも赤い x が表示される場合は、イメージを削除して挿入してください。

Measurement of pure νe flux.	


e-	 

νx	 
e-	 

νx	 

Electron scattering	 ES	 

φe	 

φe+(φµ+φτ)/7	 
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! 

"NC = "µ# +"e! 

"CC = "e
! 

"ES = "e +
1
7
"µ#
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It is necessary to take into account the matter effect in the sun	

 (Mikheyev, Smirnov, Wolfenstein)	 

  

Z 0

!µ !µ

e, p,ne, p,n

! 

M I =
GF

2
" µL#$"µL[ ] f # $ gV

f % gA
f#5( ) f[ ]

f =e,p,n
&

How to understand the solar neutrino results	 

The equation of motion is, �

! 

˙ " µ = #iVZ"µ

! 

VZ =
GF

2
"0"# f " # gV

f $ gA
f"5( ) f[ ]

f =e,p,n
%

VZ	


νµ	
 νµ	
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MSW	 effect	 

For νe	 

! 

"e + e, p,n#"e + e, p,n*	


  

Z 0
  !e     !e

e, p,n e, p,n   e!

  e!  "e

  "e

  W ++	


! 

M I "
GF

2
# eL$%#eL[ ] f $ % gV

f & gA
f$5( ) f[ ]

f =e,p,n
' + e L$

%eL[ ]
( 
) 
* 

+ 
, 
- 

! 

˙ " e = #i VZ +VW( )"e
VW+VZ	

	


νe	
 νe	


! 

VW =
GF

2
"0"# e L"

#eL[ ]$ 2GF#e

The equation of motion is, �
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 relativistic ν equation of motion in vacuume �

! 

˙ " e
˙ " µ

# 

$ 
% 

& 

' 
( = )i*0

)cos2+0 sin2+0

sin2+0 cos2+0

# 

$ 
% 

& 

' 
( 
"e
"µ

# 

$ 
% 

& 

' 
( 

! 

"0 =
m+
2 #m#

2

4E
> 0

Effective equation of motion in the vacuum for relativistic ν	 

νµ	
 νe	


Αµe	

mee	


νe	
 νe	


mµµ	


νµ	
 νµ	


νe	
 νe	


E0-ω0cos2θ0	 

νµ	
 νµ	


E0-ω0sin2θ0	 

νµ	
 νe	


ω0sin2θ0	 ! 

E" >> m"

2θ0	


mµµ-mee	
! 

2Aµe

(E0 is common and does not affect oscillation and ignored for simplicity.)	 
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! 

˙ " e
˙ " µ

# 

$ 
% 

& 

' 
( = )i

)*0 cos2+0 +VW *0 sin2+0

*0 sin2+0 *0 cos2+0

# 

$ 
% 

& 

' 
( 
"e
"µ

# 

$ 
% 

& 

' 
( then �

On the other hand,  for E=1MeV,                                             .   	


! 

"0 = #m+$
2 4E ~ 2%10$11eV

νe	
 νe	


E0-ω0cos2θ0+VZ+VW	 

νµ	
 νµ	


E0+ω0sin2θ0+VZ	 

νµ	
 νe	


ω0sin2θ0	 

In the sun, we have to add potential of the matter effect	 

(VZ is common and does not affect to oscillation 	

and ignored for simplicity)	 

! 

VW = 2GF" ~1#10
$11eV for ρ0=150g/cm3 (center of the sun)	 

So that VW and ω0 are coincidentally similar value.	 
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! 

"#
"+

$ 

% 
& 

' 

( 
) =

cos * + sin * + 

#sin * + cos * + 

$ 

% 
& 

' 

( 
) 
"e
"µ

$ 

% 
& 

' 

( 
) 

The mass eigenstate in the sum is as always	 

! 

" E + = E0 + 2#0 cos2$0 %VW( )2 + 4#0
2 sin2 2$0

" E % = E0 % 2#0 cos2$0 %VW( )2 + 4#0
2 sin2 2$0

& 
' 
( 

) ( 

Energies are, 	 

! 

sin2 " # =
1
2
1$ 2%0 cos2#0 $VW( )

2%0 cos2#0 $VW( )2 + 4%0
2 sin2 2#0

& 

' 
( ( 

) 

* 
+ + 
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! 

"0 ~ 34°

#m2 ~ 7.7$10%5 eV 2[ ]
&0 ~ 150 g /cm

3[ ]

' 

( 
) ) 

* 
) 
) 

We know 	 

! 

"0 eV[ ] = 2#10$11 E MeV[ ]
VW eV[ ] =1#10$11 % %0( )

& 
' 
( 

0	


0.2	


0.4	


0.6	


0.8	


1	


1.2	


0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	


sin
2 θ

'	 

E=10MeV	 

ρ/ρ0	 

If νe (E=10MeV) is 	

generated near the center 	

of the sun, it corresponds 	

to the heavier neutrino 	

state. 	

       νe ~ν+ 	 

è	 
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! 

P "e #"µ( ) = sin2 2 $ % sin2 & $ E 
2

L' 
( 
) 

* 
+ 
, = sin2 2 $ % sin2 2- L

$ . 
' 
( 
) 

* 
+ 
, ! 

"e t( ) = cos # $ "%e
%i # E %t % sin # $ "+e%i # E +t

"µ t( ) = sin # $ "%e
%i # E %t + cos # $ "+e%i # E +t

& 
' 
( 

) ( 

ν oscillation in the sun	 

! 

" # =
#0

cos2$0 % 4E MeV[ ] & &0( )( )2 + sin2 2$0
< 2'103km << RSUN

Then as always,	 

Oscillation length in the sun	 

ν oscillates many times in the sun	 
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! 

" r( ) ~ "0 exp #10.5
r
R

$ 
% & 

' 
( ) 
; 0.2 < r R <1( )

! 

1
"
d"
dr

# $ < 0.03<<1

The density distribution in the sun is	 

For 1 turn of the oscillation, 	

the density change rate is  small.	 

r	 R	 

log(ρ/ρ0)	 

ν	 

While traveling in the sun, 	

ν experiences changing density	 

 This is called adiabatic condition	 
111019	
 73	
suekane@FAPPS	



