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Q1.  Where do the following relation come from? 	
 

! 

"# $1, "L $1% 4xw + 8xw
2 , "U $1%

8
3
xw +

32
9
xw
2 , "D $1%

4
3
xw +

8
9
xw
2

xw = sin&w ~ 0.23

A1. In the standard model, the couplings of                 are,  	
 

! 

Z 0 " ff 

a	

 b (=(a-4Qfxw))	

 Γ/2	



 νe, νµ, ντ	

  1	

 1	

 1	


  e, µ, τ	

 -1	

 -1+4xw	


  u, c, t	

  1	

 1-8/3xw	


  d, s, u	

 -1	

 -1+4/3xw	



! 

LZff = "igZ f # µ a "b# 5( ) f[ ]Zµ
0

! 

"Zff # a 2 + b 2

! 

1" 4xw + 8xw
2

! 

1" 8 3( )xw + 32 9( )xw
2

! 

1" 4 3( )xw + 8 9( )xw
2

è	
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Q2.  You said     and      are different particle from the Davis's	


        negative result at reactor. But if neutrino is Majorana, they 	


        can be same.   	


	


A1.  Yes. It is exactly the introductory discussion about the 0ν2β 	


        experiment.  To explain this, I will borrow next 3 slides from	


        tomorrows lecture.  What I meant yesterday were that at that 	


        time of the experiment, before the idea of Majorana particle, 	


        the experimental result could be understood so.  	
 

! 

"

! 

" 
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 So far neutrino and anti-neutrino are considered ���
to be different particle because �

π+	


n	



e+	



e-	



ν	



! 

" #"

π-	


n	



e-	



e-	



ν	



This takes place.	
 

But not this.	
 

So that	
 

from tomorrows slide -1	
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Chirality Conservation �

! 

u R a + b" 5( )uL = 0

uL	

 vL	



! 

a+b" 5( )" µ

g/W/Z/G	
 

uL	

 vR	



! 

a+b" 5( )" µ

g/W/Z/G	
 

For EM, Weak and Strong interactions, the final chiralirty	


is always same as initial chirality	
 

from tomorrows slide -2	
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Another possibility �

π+	

 n	


e+	



e-	


ν	



π-	


n	



e-	



e-	



ν	



The neutrino produced with positron has positive chirarity and can	


not produce negative chirarity electron through weak interaction.	
 

So that ν and     are not necessarily different particle 	
 

! 

" 

Chirarity conserves	
 

Chirarity changes	
 

from tomorrows slide -3	
 



where, θ is defined in the right figure;	


	


	


	


and	



θ	
 

R-P	
 
! 

2Q

! 

tan" # 2Q
R$P

! 

E± "
1
2

P+ R( ) ± P # R( )2 + 4Q 2( )
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Q	


P	

 R	



α	
 β	
 β	
 β	
 α	
 α	
 

The point of  of yesterday's lecture	
 

Whatever the a, b are, the time dependent general state is 	
 

! 

" t( ) = C1 cos # 2( )e$iE+t $C2 sin # 2( )e$iE$t( )%
+ C1 sin # 2( )e$iE+t +C2 cos # 2( )e$iE$t( ) &



! 

" t( ) = cos2 # 2( )e$iE+t + sin2 # 2( )e$iE$t( )% +
1
2
sin# e$iE+t $ e$iE$t( ) &

! 

P"#$ t( ) =
sin%
2

e&iE+t & e&iE&t( )
2

= sin2% sin2 E+ &E&

2
t

Then the probability we observe         state is 	
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The point of  of yesterday's lecture	
 
If initial condition is pure        state,                   ,  C1=cos(θ/2), 
C2=-sin(θ/2) and  the wave function at later time t is,  	
 

! 

"

! 

" 0( ) = #

! 

"

If α, β are neutrino flavor state; νe, νµ, it is called neutrino oscillation.	


If they are spin under magnetic field, it is called spin precession.	
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If we choose, C1=1, C2=0, we get an energy eigenstate	


	


	


If we choose, C1=0, C2=1, we get another energy eigenstate	


	


	


The relation between the energy eigenstates and the state α,β is 	


	



! 

"+ t( ) = cos # 2( )$ + sin # 2( ) %( )e&iE+t ' + e&iE+t
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The point of  of yesterday's lecture	
 

! 

"# t( ) = #sin $ 2( )% + cos $ 2( ) &( )e#iE#t ' # e#iE#t

! 

+

"

# 

$ 
% 

& 

' 
( =

cos ) 2( ) sin ) 2( )
"sin ) 2( ) cos ) 2( )
# 

$ 
% 

& 

' 
( 
*

+

# 

$ 
% 

& 

' 
( 

θ/2 is called mixing angle.	
 

That's all. 	
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Answer to another very good question �

Q3, What is the "magnetic field" of ν oscillation? 	
 
A3, We do not know. 	


       It is the very physics we study by ν oscillation (and mass).	


       For the case of quarks (quarks oscillate as well) there are	


       transition amplitudes (T.A.);	



d'	

 s'	

d'	

 d'	

 s'	

 s'	



R	
 Q	
 P	
 

! 

md =
1
2

P+ R( )" P " R( )2 + 4Q 2( )
mu =

1
2

P+ R( ) + P " R( )2 + 4Q 2( )

# 

$ 
% 

& 
% 

The quark masses are generated from the T.A.	
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We understand the quark masses are generated from the coupling to 	


the Higgs potential.  	


=>  The "magnetic field" of the quark T.A. is the Higgs field.	


	


We may think the "magnetic filed" of ν flavor transition is the Higgs	


field as well. However the coupling constant (mν) is very small	


compared with quark's (mq) and theorists do not like it. Theorists 	


believes there should be other mechanism to generate ν T.A., such 	


as the see-saw mechanism, which naturally explains smallness of mν, 	


while keeping ν T.A. similar size of quark's.	


To study these kinds of things is an ultimate purpose of current 	


neutrino physics.  To do so, experimentalists' mission is to measure the 	


T.A.'s,   to check if           , to measure imaginary component of  T.A. 	


(CP violation), etc. ... And theorists' mission is to explain them and 	


explain our world using the information.	


	


 (I am happy the analogy of spin worked very well so as to lead this explanation)	

! 

" = " 



Back to the ν Oscillation: ν at rest 	
 

νµ	

 νe	



Αµe	


mee	



νe	

 νe	



mµµ	



νµ	

 νµ	



We assume there are transition amplitudes between νe and νµ	
 

2θ	



mµµ-mee	


! 

2Aµe

Caution!! from now on we define the angle θ as	


  	


         	


	


 just for convention 	


of neutrino oscillation people	
 

! 

tan2" #
2Aµe

mµµ $mee

=
2Q
R$P

P	
 R	
 Q	
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ν Oscillations: ν at rest 	
 

νµ	

 νe	



Αµe	

mee	



νe	

 νe	



mµµ	



νµ	

 νµ	



! 

m" =
mee +mµµ

2
" mee "mµµ( )2 4 + Aµe

2

m+ =
mee +mµµ

2
+ mee "mµµ( )2 4 + Aµe

2

# 

$ 
% 

& 
% 

2θ	



mµµ-mee	


! 

2Aµe

Then the energy eigenstates and their energy can be obtained	


 borrowing spin result 	
 

! 

"+

"#

$ 

% 
& 

' 

( 
) =

cos* sin*
#sin* cos*
$ 

% 
& 

' 

( 
) 
"µ

"e

$ 

% 
& 

' 

( 
) 

! 

P "e #"µ( ) = sin2 2$ sin2 m+ %m%

2
t& 

' ( 
) 
* + 
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Mass of νe 	
 

! 

"e = cos#"$ + sin#"+

But this wve function means if we measure νe mass, m- is observed 	


with probability cos2θ and  m+ is observed with probability sin2θ. 	


If the experiment does not have enough accuracy to separate m+ and	


m– (and this is always so if we know we measure νe  property) what 	


we observe is the average of them. 	



! 

m"e
= m# cos

2$ +m+ sin
2$ = meeWhat we observe by experiment	
 

This title sounds to be a paradoxical  since νe is not 	


mass eigenstate and does not have fixed mass;	
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m-	
 m+	
 

cos2θ	
 sin2θ	
 

Energy resolution	
 

# 
of

 e
ve

nt
s	
 



Relation between average νe mass and T.A.	
 
And likewise 	
 

In that sense, we can call the transition amplitudes  mee (mµµ) 	


as "electron (muon) neutrino mass", respectively.	
 

! 

m"µ
= m+ cos

2# +m$ sin
2# = mµµ

νµ	

 νe	



Αµe	

mee	



νe	

 νe	



mµµ	



νµ	

 νµ	



νµ	

 νe	



Αµe	



νe	

 νe	



! 

m"e

νµ	

 νµ	



! 

m"µ

If you like, you may re-write. 	
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Oscillation of relativistic ν�

! 

P "e #"µ( ) = sin2 2$ sin2 E+ %E%

2
t& 

' ( 
) 
* + 

Usually text books explain it starting from  	
 

Then because, 	



! 

E± = p2 +m±
2 ~ p2 +

m±
2

2p
" E+ #E#( )t ~

m+
2 #m#

2( )L
2E$2

~ m+
2 #m#

2

2E
L

! 

P "e #"µ( ) = sin2 2$ sin2 %m
2

4E
L

& 

' 
( 

) 

* 
+ 

And finally get the standard formula 	
 

But why we can say p is same? 	


What is the E in the final formula? 	


This delivation is based on plain waves. It it OK? 	
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Oscillation of relativistic ν�
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Actually the formalism of oscillation of relativistic neutrino is not easy.	


A prominent theorist said,   	
 

There are still some discussions about the theory of neutrino oscillations	


even in vacuum. ..  The issues become important.. where the uncertainty 	


in energy is much smaller than the oscillation frequency. 	


by  A.Y.Smirnov@Neutrino2008, Arxive/hep-ph0810.2668	
 

Even nowadays sometimes I see preprints discussing this issue on arXive.	


So probably most of us do not understand it yet. 	
 

But experimentalists know neutrino is oscillating by heart from their data.  	


So I would like to push theorists to let us understand it!	
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! 

sin2 m+ "m"

2
t LorentzTrans. @x=#t$ % $ $ $ $ $ sin2 m+ "m"

2
t
&

' 

( 
) 
* 

+ 
, 

If neutrino oscillation at rest is seen from the system which moves with 	


velocity –β with respect to the system,  from Lorentz transformation,  	
 

! 

" =
1
1#$2where, Lorenz factor: 	
 

Because most of us do not understand it, it may be allowed	


to think of it as following way. 	


It makes an issue of ν oscillation experiment clear. 	
 

Oscillation of relativistic ν�
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ν-Oscillation at rest	
 



! 

E" = #m", E+ = #m+

From this system the neutrino energy looks as,	
 

! 

sin2 m+ "m"

2
t
#

$ 

% 
& 
' 

( 
) 

#=2 E m+ +m"( )* + * * * * sin2 m+
2 "m"

2

4 E
t

! 

" =
E+ +E#

m+ +m#

=
2 E

m+ +m#

Oscillation of relativistic ν�

=> Since we do not know the absolute ν masses, we do not know 	


Lorentz factor γ even if we know the energy. This introduces 	


additional  uncertainty when extracting T.A. from the data.	


(It is not the case for K0 oscillation and quark oscillation.)	
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! 

sin2 m+ "m"( )m"

2E"

t(It should be OK to use γ=E-/m- and use                                 as well.)  	
 



What We Measure by ν Oscillation? 

! 

sin22" =
1

1+ mµµ #mee( )2 4Aµe
2
,

$m2 = mµµ
2 #mee

2( ) 1+ 4Aµe
2 mµµ #mee( )2

% 

& 
' 

( 
' 

2θ	



mµµ-mee	

! 

2Aµe

νµ	

 νe	



Αµe	



mee	



νe	

 νe	



mµµ	



νµ	

 νµ	



⇒ Measurement of mixing angle is as important as measurement of mass. 	


Both mass and mixing are combinations of flavor transition amplitudes.	



! 

P"e#"µ
= sin2 2$ sin2 %m

2

4E
L

Relation between observable and T.A.	
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! 

mee = m"e

mµµ = m"e

2
+#m2 cos2$

Aµe =
1
2

m"e

2
+#m2 cos2$ % m"e

& 
' 
( ) 

* 
+ tan2$

, 

- 

. 

. 

/ 

. 

. 

If we could measure Δm2, θ, and            all the transition 	


amplitude can be determines.  	
 

! 

m"e
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Purpose of ν Oscillation experiments    

H0	


Non Standard Higgs?                     or                      ?  

Sub Structure?? 

να	



Or something else?? 
 ?	



Physics of ν oscillation is to measure the flavor  
transition amplitudes and think of its origin 

Now we know                       exists.  νβ	



! 

" 0

#

$ # 

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 
~
0.7 0.7 0
+0.4 0.4 0.8
0.6 +0.6 0.6

% 

& 

' 
' ' 

( 

) 

* 
* * 

uu 
dd 
ss 

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

d	


d	



s	


s	



G	


For Example, 
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H0	



PS mixing	
 



ν Oscillation Experiments so far �
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Atmospheric ν	


  * SuperKamiokande	


  * MACRO	


  * Soudan-2	


	


Accelerator ν  	
 
  * LSND  	


  * K2K	


  * T2K	


  * MINIBOONE	


  * MINOS	


  * OPERA	


 	
 

Solar ν	


  * Homestake	


  * SAGE	


  * GALLEX/GNO  	


  * SuperKamiokande	


  * SNO	


	


Reacotor ν  	
 
  * Chooz  	


  * Paloverde	


  * KamLAND	
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2 oscillations measured	



Murayama	



Atmospheric	


Accelerator	



Solar	


Reactor	



1 upper limit measured	
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How they were measured?	
 



 	



νµ	



νµ	

 νe	



 Atmospheric ν �
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 Atmospheric ν anomaly �

! 

" + #µ+ +$µ

µ+ # e+ +$ µ +$e   

! 

"# $µ# + ! % µ

µ# $ e# +%µ +% e

! 

R =
"µ +" µ
"e +" e

~ 2

Observation => R<2  ??	


Atmospheric ν anomaly. 	



Expected.	
 

Detect ν from the other side of the Earth. 	


L=2Rcosθ	


=> L dependence of atmospheric ν 	


disappearance.	



θ

L

detector	
 

Earth	
 

neutrino	
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 Atmospheric n ���
experiments �

Soudan	



Macro	
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Kajita Nufact04 SI	



1997: 1st Discovery of neutrino oscillation 	


by atmospheric neutrinos	
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Detection of Atmospheric ν by water cherenkov detector	
 

! 

"µ + A#µ + X

µ	
 

Clear Cherenkov ring	
 
Water	
 

! 

"e + A# e+ X
e à EM shower	
 

e	
 
Blurred Cherenkov ring	
 

Water	
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Kajita, Nufact04 SI	





sin22θ~1	


Δm2~2x10-3eV2	
 

3588 cites	


(as of 	


15/Sep/2011)	
 

1998	
 

(1)Deficit 	


     of νµ	


(2) νe as	


 expected	


	


=νµ àντ 	


Oscillation	


	



(1)	
 

νe 	
 

νµ	
 

(2)	
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Kajita Fufact04 �

2004	
 

Recovery of event 	


rate in L only occurs	


by oscillation.	


Not by one-way 	


processes like decay 	


and decoherence	
 

111019	
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Kajita Fufact04	





Long Baseline Accelerator Experiments	


(=high energy νµ beam)	



Kajita, Nufact04 SI	



K2K/T2K	
 MINOS	
 

(NOVA)	
 

OPERA	
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K2K	


~2004	
 

K2K=KEK to Kamioka	
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tjampens Nufact04	
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How ν beam is generated	
 

! 

p+ A"# + : # + "µ+ +$µ

! 

" + # e+ +$e
" + #µ+ +$µ

~10%4 (Helicity Suppression 	


=> Almost pure νµ	
 

! 

p+ A" K + + X
p+ A"# + + X

$
K + "# 0 + e+ +%e

K + " all
~ & $ 5%

Main νe contamination comes from    	
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Synchronization of timing	


=Removal of Backgrounds	
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K2K result	
 

! 

sin2 2" ~1
#m2 = 2.8$0.9

+0.7( )%10$3 eV 2[ ] 90%CL( )

! 

P "µ #"µ( )

111019	

 suekane@FAPPS	





39	

111019	

 suekane@FAPPS	





! 

"µ #"µMINOS              oscillation measurement 	
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MINOS              oscillation measurement 	
 

! 

" µ #" µ

! 

"# $% µ + µ# : % µ $% X :% µ + A$µ+ + & X 

! 

" + #$µ + µ+ : $µ #$X :$µ + A#µ% + X

! 

p+ Z" n#$ +m# + + X

Change the polarity 	


of the magnets in 	


the beam line	
 

CPT is OK	
 

D.Naples@TAUP2011	
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OPERA �
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* Appearance of	


* ντ+X à	
 τ+X' and identify τ by nuclear emulsion hybrid detector.	


* Maybe the 1st experiment to confirm appearance.	


(So far all the ν oscillation experiments measured disappearance)	


	


* Difficulty are that the mτ is large and difficult to produce τ 	


   (En>3.5GeV)	


   and that τ is difficult to identify. 	


   It decays to µ or e within 1mm and difficult to separate from 	


   νµ+X à	
 µ+X' unless decay vertex is identified. 	


     	
 

! 

"µ #"$
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This is more famous�now for OPERA �

It is a great discovery if it is true. But needs independent tests.	
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Summary of atom. & LBL accel. ν experiments	



Atmospheric	


K2K	



K2K(positive)	



MINOS	



T2K	



! 

sin2 2" ~1, #m2 ~ 2.5$10%3 eV 2[ ]
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Solar ν	


(=low energy νe) �

Production of solar ν	
 

! 

4 p+ 2e"

#4He+ 2$e + 26.73MeV "E$

E$ ~ 0.6MeV

ν flux @ Earth	
 

! 

J" =
n"
Q
JQ #

2"
26.1MeV

$ 8.56$1011 MeV /cm2 / s[ ] = 6.6$1010 " /cm2 / s[ ]

! 

"c # 150g /cc, Tc # 1.6KeV
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Solar neutrino spectrum �
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Solar Neutrino Experiments	



ν target	

 Eth	

 rate/SSM	


Homestake	

 Cl	

 8B	

 0.31	


GALLEX/GNO	

 Ga	

 pp	

 0.51	



SAGE	

 Ga	

 pp	

 0.53	


SK/Kamiokande	

 H2O	

 8B	

 0.465	


SNO	

 D20	

 8B	

 1 (neutral current)	



Homestake	


SNO	



SAGE	



GNO/GALLEX	



Kamiokande/	


SuperK	





The 1st solar neutrino detection	


& indication of solar ν deficit�

＊Homestake (615ton), (1968~)	



C2Cl4	



R=Data/Prediction ~0.31	
 
! 

"e+
37Cl# e$+37Ar

37Ar#37Cl + e$ +"e
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! 

"e+
37Ga# e$+37Ge
Eth = 233KeV( )

Ga experiments �
Issue for Homestake(Cl) experiment.	


à The energy threshold is high and can not detect  pp-ν .	


à Flux very much depends on the detail of fusion process.	


à possilbe ambiguity. 　	
 

Low energy threshold and pp-ν can be detected.	


ν flux is independent for detail of the fusion process in the sun	


and reliable prediction of ν flux is possible. 　	
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GNO/GALLEX	



GNO	



! 

"e+
37Ga# e$+37Ge Eth = 233KeV( )

37Ge#37Ga+ e$ Auger( ) +"e %1 2 ~ 11days( )

(1)  leave GaCl3 target for a few weeks 	


and accumulate GeCl3  in the target. 	


(2) Purge out GeCl4 and dissolve it in 	


water. 	


(3) Detect the β-decay )37Ge->37Ga+e-	


(4) Perform (1)~(3) many times for	


 years. �
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 Results of GNO/GALLEX �

! 

77.5±6.2"4.7
+4.3 SNU( ), R = 0.61( )

＊GALLEX(GALLium EXperiment),	


         (30tons), (1991~)	



! 

GNO+GALLEX Data /Pr ediction = 0.51± 0.04

＊GNO(Gallium Neutrino Observatory),	


           (30->100tons ~2003)	



GALLEX+GNO	



SSM	



GALLEX+GNO	



SSM	
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SAGE(Soviet American Ga Experiment) 1990~	



! 

Data Pr ediction = 0.53"0.040
+0.042

SAGE - The Russian-American Gallium Experiment	



51Cr source 
experiments 

SSM	
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Solar ν detection by electron scattering	


�

  e!

  e!  "e

  "e

  W +

  e!

Z 0

  e!

  "e     "e

＋	
 

! 

"#ee
~ 2GF

2meE#

$
1
2

+ xW
% 
& 
' 

( 
) 
* 
2

+
1
3
xW
2

+ 

, 
- 

. 

/ 
0 ~ 0.9110244E# MeV[ ]cm2! 

"e + e# $"e + e#

（Kamokande/SuperKamiokande/SNO）	
 

Observe recoiled electron	
 

  e!

Z 0

  e!

"µ "µ

! 

"#µe
~ 0.16$10%44E# MeV[ ]cm2

~ 1
6
"#ee

! 

"µ ,#e
$ %"µ ,#e

$
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Recoiled electron energy distribution of Eν=8MeV	
 

0

5E-44

1E-43

1.5E-43

0 2 4 6 8 10
  Ee MeV[ ]

    

d!
dEe

cm2 MeV[ ]

    ! "ee#" ee( )

    ! "µ ,$e#" µ ,$e( )

    ! " µ ,$e#" µ ,$e( )

    ! " ee#" ee( )

    E" = 8MeV

  EMAX = 7.75MeV

SK threshold	
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Solar image	


by neutrinos �
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Is it due to neutrino oscillation？	


Solar model may be wrong.	


è It is important to measure neutral current interaction	


and measure the total (flavor independent) ν flux.	
 

For all the experiments, the observed neutrino fluxes 	


are smaller than predicted value. 	
 

The solar neutrino anomaly �
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Measure the Neutral Current	
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Why D2O?	



dd

e,
!e,e,µ,"

nn

pp

ZZ00

NCNNCC !e,e,µ,"

イメージを表示できません。メモリ不足のためにイメージを開くことができないか、イメージが破損している可能性があります。コンピューターを再起動して再度ファイルを開いてください。それでも赤い x が表示される場合は、イメージを削除して挿入してください。

! 

n+ d" t +# 6.25MeV( )

All flavor has same cross section. 	


The total ν flux can be measured	


independently from oscillation. 	


è	
 Solar model can be checked. 	
 

φe+φµ+φτ	
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Why D2O?	



dd

!eee
ee

ppp

pp

--

WW++CC

CCCCCC
イメージを表示できません。メモリ不足のためにイメージを開くことができないか、イメージが破損している可能性があります。コンピューターを再起動して再度ファイルを開いてください。それでも赤い x が表示される場合は、イメージを削除して挿入してください。

Measurement of pure νe flux.	



e-	
 

νx	
 
e-	
 

νx	
 

Electron scattering	
 ES	
 

φe	
 

φe+(φµ+φτ)/7	
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! 

"NC = "µ# +"e! 

"CC = "e
! 

"ES = "e +
1
7
"µ#

111019	

 suekane@FAPPS	





It is necessary to take into account the matter effect in the sun	


 (Mikheyev, Smirnov, Wolfenstein)	
 

  

Z 0

!µ !µ

e, p,ne, p,n

! 

M I =
GF

2
" µL#$"µL[ ] f # $ gV

f % gA
f#5( ) f[ ]

f =e,p,n
&

How to understand the solar neutrino results	
 

The equation of motion is, �

! 

˙ " µ = #iVZ"µ

! 

VZ =
GF

2
"0"# f " # gV

f $ gA
f"5( ) f[ ]

f =e,p,n
%

VZ	



νµ	

 νµ	
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MSW	
 effect	
 

For νe	
 

! 

"e + e, p,n#"e + e, p,n*	



  

Z 0
  !e     !e

e, p,n e, p,n   e!

  e!  "e

  "e

  W ++	



! 

M I "
GF

2
# eL$%#eL[ ] f $ % gV

f & gA
f$5( ) f[ ]

f =e,p,n
' + e L$

%eL[ ]
( 
) 
* 

+ 
, 
- 

! 

˙ " e = #i VZ +VW( )"e
VW+VZ	


	



νe	

 νe	



! 

VW =
GF

2
"0"# e L"

#eL[ ]$ 2GF#e

The equation of motion is, �
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 relativistic ν equation of motion in vacuume �

! 

˙ " e
˙ " µ

# 

$ 
% 

& 

' 
( = )i*0

)cos2+0 sin2+0

sin2+0 cos2+0

# 

$ 
% 

& 

' 
( 
"e
"µ

# 

$ 
% 

& 

' 
( 

! 

"0 =
m+
2 #m#

2

4E
> 0

Effective equation of motion in the vacuum for relativistic ν	
 

νµ	

 νe	



Αµe	


mee	



νe	

 νe	



mµµ	



νµ	

 νµ	



νe	

 νe	



E0-ω0cos2θ0	
 

νµ	

 νµ	



E0-ω0sin2θ0	
 

νµ	

 νe	



ω0sin2θ0	
 ! 

E" >> m"

2θ0	



mµµ-mee	

! 

2Aµe

(E0 is common and does not affect oscillation and ignored for simplicity.)	
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! 

˙ " e
˙ " µ

# 

$ 
% 

& 

' 
( = )i

)*0 cos2+0 +VW *0 sin2+0

*0 sin2+0 *0 cos2+0

# 

$ 
% 

& 

' 
( 
"e
"µ

# 

$ 
% 

& 

' 
( then �

On the other hand,  for E=1MeV,                                             .   	



! 

"0 = #m+$
2 4E ~ 2%10$11eV

νe	

 νe	



E0-ω0cos2θ0+VZ+VW	
 

νµ	

 νµ	



E0+ω0sin2θ0+VZ	
 

νµ	

 νe	



ω0sin2θ0	
 

In the sun, we have to add potential of the matter effect	
 

(VZ is common and does not affect to oscillation 	


and ignored for simplicity)	
 

! 

VW = 2GF" ~1#10
$11eV for ρ0=150g/cm3 (center of the sun)	
 

So that VW and ω0 are coincidentally similar value.	
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! 

"#
"+

$ 

% 
& 

' 

( 
) =

cos * + sin * + 

#sin * + cos * + 

$ 

% 
& 

' 

( 
) 
"e
"µ

$ 

% 
& 

' 

( 
) 

The mass eigenstate in the sum is as always	
 

! 

" E + = E0 + 2#0 cos2$0 %VW( )2 + 4#0
2 sin2 2$0

" E % = E0 % 2#0 cos2$0 %VW( )2 + 4#0
2 sin2 2$0

& 
' 
( 

) ( 

Energies are, 	
 

! 

sin2 " # =
1
2
1$ 2%0 cos2#0 $VW( )

2%0 cos2#0 $VW( )2 + 4%0
2 sin2 2#0

& 

' 
( ( 

) 

* 
+ + 
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! 

"0 ~ 34°

#m2 ~ 7.7$10%5 eV 2[ ]
&0 ~ 150 g /cm

3[ ]

' 

( 
) ) 

* 
) 
) 

We know 	
 

! 

"0 eV[ ] = 2#10$11 E MeV[ ]
VW eV[ ] =1#10$11 % %0( )

& 
' 
( 

0	



0.2	



0.4	



0.6	



0.8	



1	



1.2	



0	

 0.2	

 0.4	

 0.6	

 0.8	

 1	



sin
2 θ

'	
 

E=10MeV	
 

ρ/ρ0	
 

If νe (E=10MeV) is 	


generated near the center 	


of the sun, it corresponds 	


to the heavier neutrino 	


state. 	


       νe ~ν+ 	
 

è	
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! 

P "e #"µ( ) = sin2 2 $ % sin2 & $ E 
2

L' 
( 
) 

* 
+ 
, = sin2 2 $ % sin2 2- L

$ . 
' 
( 
) 

* 
+ 
, ! 

"e t( ) = cos # $ "%e
%i # E %t % sin # $ "+e%i # E +t

"µ t( ) = sin # $ "%e
%i # E %t + cos # $ "+e%i # E +t

& 
' 
( 

) ( 

ν oscillation in the sun	
 

! 

" # =
#0

cos2$0 % 4E MeV[ ] & &0( )( )2 + sin2 2$0
< 2'103km << RSUN

Then as always,	
 

Oscillation length in the sun	
 

ν oscillates many times in the sun	
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! 

" r( ) ~ "0 exp #10.5
r
R

$ 
% & 

' 
( ) 
; 0.2 < r R <1( )

! 

1
"
d"
dr

# $ < 0.03<<1

The density distribution in the sun is	
 

For 1 turn of the oscillation, 	


the density change rate is  small.	
 

r	
 R	
 

log(ρ/ρ0)	
 

ν	
 

While traveling in the sun, 	


ν experiences changing density	
 

 This is called adiabatic condition	
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