Heavy Flavours III

FAPPS 201I at Les Houches Emi KOU (LAL/IN2P3)

Plan

- Ist lecture: Introduction to flavour physics
* Weak interaction processes (charges, neutral processes, GIM mechanism)
* Discovery of CP violation in the K system
* Measuring oscillation in the B system
- 2nd lecture: Describing oscillations within SM
* Kobayashi-Maskawa mechanism for CP violation
\star Testing the unitarity of the CKM matrix

Plan

- 3rd lecture: Searching new physics with flavour physics
* Some examples (estimating top quark mass, charged Higgs mass in 2HDM, neutral Higgs mass in SUSY)
* SUSY CP/flavour Problem
\star Hot topics in flavour physics

Further reading: "CP Violation" Bigi and Sanda (Cambridge Press)

New particle searches in flavour physics

Searching new particle with loop process

Searching new particle with loop process

Indeed, the top quark mass was predicted to be around $>100 \mathrm{GeV}$ after the first measurement of ΔM_{d} (1987 by ARGUS Experiment)

Searching new particle with loop process

$C_{0}(x), D^{\prime}(x)$

Searching new particle with loop process

New physics contributions to the $\mathrm{b} \rightarrow \mathrm{s} \gamma$ process

SM computation of the $b \rightarrow s \gamma$ process

$\begin{array}{lll}\mathbf{W}^{ \pm} & \mathrm{s} & \mathcal{L}_{C C}\end{array}=\frac{g}{\sqrt{2}}\left(J_{\mu}^{+} W^{-\mu}+J_{\mu}^{-} W^{+\mu}\right)$.

SM computation of the $b \rightarrow s \gamma$ process

$$
D_{0}^{\prime}\left(x_{t}\right)=-\frac{\left(8 x_{t}^{3}+5 x_{t}^{2}-7 x_{t}\right)}{12\left(1-x_{t}\right)^{3}}+\frac{x_{t}^{2}\left(2-3 x_{t}\right)}{2\left(1-x_{t}\right)^{4}} \ln x_{t}
$$

New physics model I: Two Higgs doublet model \sum_{i}

New physics model I:

Two Higgs doublet model

$$
\begin{gathered}
\Phi_{\mathrm{I}}=\left(\Phi_{0}, \Phi^{+}\right)_{1} \rightarrow \mathrm{v}_{1} ; \quad \Phi_{2}=\left(\Phi_{0}, \Phi^{+}\right)_{2} \rightarrow \mathrm{v}_{2} \\
\tan \beta=\mathrm{v}_{2} / \mathrm{v}_{1}, \mathrm{v}_{1}{ }^{2+} \mathrm{v}_{1}{ }^{2}=\mathrm{v}^{2} \\
\text { Type I: } A_{\mathrm{u}}=\cot \beta, \mathrm{A}_{\mathrm{d}}=-\cot \beta \\
\text { Type II: } A_{\mathrm{u}}=\cot \beta, \mathrm{A}_{\mathrm{d}}=\tan \beta
\end{gathered}
$$

New physics model I:

Two Higgs doublet model

$$
\begin{aligned}
& \Phi_{1}=\left(\Phi_{0}, \Phi^{+}\right)_{।} \rightarrow v_{1} ; \quad \Phi_{2}=\left(\Phi_{0}, \Phi^{+}\right)_{2} \rightarrow \mathrm{v}_{2} \\
& \tan \beta=v_{2} / v_{1}, v_{1}{ }^{2}+v_{1}{ }^{2}=v^{2} \\
& \text { Type I: } A_{u}=\cot \beta, A_{d}=-\cot \beta \\
& \text { Type II: } A_{u}=\cot \beta, A_{d}=\tan \beta
\end{aligned}
$$

Now the loop function looks like...

$$
c_{7,8}\left(M_{W}\right)=G_{7,8}\left(m_{t}^{2} / M_{W}^{2}\right)+\frac{1}{3 \tan ^{2} \beta} G_{7,8}\left(m_{t}^{2} / m_{H-}^{2}\right)+\lambda F_{7,8}\left(m_{t}^{2} m_{H^{-}}^{2}\right)
$$

The measurement of $b \rightarrow s \gamma$ can give prediction orconstraint on the Higgs mass and $\tan \beta$

New physics model I:

Two Higgs doublet model

The measurement ot $\mathrm{b} \xrightarrow{\tan \beta} \mathrm{s} \gamma$ can give prediction orconstraint on the Higgs mass and $\tan \beta$

New physics model II:

 Supersymmetry (minimum...)(

New physics model II:

 Supersymmetry (minimum...)

The loop function for chargino diagram looks like...

$$
\begin{aligned}
c_{7,8}^{\tilde{\chi}^{ \pm}}\left(M_{W}\right) \simeq & \sum_{j=1}^{2}\left\{\frac{M_{W}^{2}}{\tilde{m}_{\chi_{j}^{ \pm}}^{2}}\left|V_{j 1}\right|^{2} G_{7,8}\left(\frac{\tilde{m}^{2}}{\tilde{m}_{\chi_{j}^{ \pm}}^{2}}\right)-\frac{M_{W} U_{j 2} V_{j 1}}{\tilde{m}_{\chi_{j}^{ \pm}} \sqrt{2} \cos \beta} H_{7,8}\left(\frac{\tilde{m}^{2}}{\tilde{m}_{\chi_{j}^{ \pm}}^{2}}\right)\right. \\
& +\sum_{k=1}^{2}\left[-\frac{M_{W}^{2}}{\tilde{m}_{\chi_{j}^{ \pm}}^{2}}\left|V_{j 1} T_{k 1}-\frac{m_{t} V_{j 2} T_{k 2}}{M_{W} \sqrt{2} \sin \beta}\right|^{2} G_{7,8}\left(\frac{\tilde{m}_{t_{k}}^{2}}{\tilde{m}_{\chi_{j}^{ \pm}}^{2}}\right)\right. \\
& \left.\left.+\frac{M_{W} U_{j 2} T_{k 1}}{\tilde{m}_{\chi_{j}^{ \pm}} \sqrt{2} \cos \beta}\left(V_{j 1} T_{k 1}-\frac{m_{t} V_{j 2} T_{k 2}}{M_{W} \sqrt{2} \sin \beta}\right) H_{7,8}\left(\frac{\tilde{m}^{2}}{\tilde{m}_{\chi_{j}^{ \pm}}^{2}}\right)\right]\right\}
\end{aligned}
$$

New physics model II:

 Supersymmetry (minimum...)The loop functio

$$
c_{7,8}^{\tilde{\chi}_{ \pm}^{ \pm}}\left(M_{W}\right) \simeq
$$

$I_{7,8}\left(\frac{\tilde{m}^{2}}{\tilde{m}_{\chi_{j}^{ \pm}}^{2}}\right)$

SUSY CP/flavour problem

SUSY CP/flavour problem

SM
(V) There is only one source of CP violation.
I FCNC is
suppressed naturally by the GIM mechanism.

SUSY
(V) There is many (too many) sources of CP violation.
(V) FCNC can
occur since there is, a priori, no GIM mechanism.

SUSY CP/flavour problem

Names		spin 0	spin $1 / 2$	$S U(3)_{C}, S U(2)_{L}, U(1)_{Y}$
squarks, quarks ($\times 3$ families)	$\begin{aligned} & Q \\ & \bar{u} \\ & \bar{d} \end{aligned}$	$\begin{gathered} \left(\widetilde{u}_{L} \widetilde{d}_{L}\right) \\ \widetilde{u}_{R}^{*} \\ {\widetilde{d_{d}}}_{R}^{*} \end{gathered}$	$\begin{gathered} \left(u_{L} d_{L}\right) \\ u_{R}^{\dagger} \\ d_{R}^{\dagger} \end{gathered}$	$\begin{gathered} \left(\mathbf{3}, \mathbf{2}, \frac{1}{6}\right) \\ \left(\overline{\mathbf{3}}, \mathbf{1},-\frac{2}{3}\right) \\ \left(\overline{\mathbf{3}}, \mathbf{1}, \frac{1}{3}\right) \end{gathered}$
sleptons, leptons ($\times 3$ families)	$\begin{aligned} & L \\ & \bar{e} \end{aligned}$	$\begin{gathered} \left(\widetilde{\nu} \widetilde{e}_{L}\right) \\ \widetilde{e}_{R}^{*} \end{gathered}$	$\left.\begin{array}{cc} \hline\left(\begin{array}{l} \nu \end{array} e_{L}\right. \end{array}\right)$	$\begin{gathered} \left(\mathbf{1}, \mathbf{2},-\frac{1}{2}\right) \\ (\mathbf{1}, \mathbf{1}, 1) \end{gathered}$
Higgs, higgsinos	$\begin{aligned} & H_{u} \\ & H_{d} \end{aligned}$	$\begin{aligned} & \left(\begin{array}{ll} H_{u}^{+} & H_{u}^{0} \end{array}\right) \\ & \left(\begin{array}{ll} H_{d}^{0} & H_{d}^{-} \end{array}\right) \end{aligned}$	$\left.\begin{array}{ll} \left(\widetilde{H}_{u}^{+}\right. & \widetilde{H}_{u}^{0} \end{array}\right)$	$\begin{aligned} & \left(\mathbf{1}, \mathbf{2},+\frac{1}{2}\right) \\ & \left(\mathbf{1}, 2,-\frac{1}{2}\right) \end{aligned}$

SUSY CP/flavour problem

Names		spin 0	spin 1/2	$S U(3)_{C}, S U(2)_{L}, U(1)_{Y}$
squarks, quarks	Q	$\left(\begin{array}{ll}\widetilde{u}_{L} & \widetilde{d}_{L}\end{array}\right)$	$\left(\begin{array}{ll}u_{L} & d_{L}\end{array}\right)$	(3, 2, $\frac{1}{6}$)
($\times 3$ familIf Supersymmetry is unbroken*, the SMparticles and their SUSY partners				
sleptons, le ($\times 3$ familfes)		uld have	the same	
Higgs, higgsinos	$\begin{aligned} & H_{u} \\ & H_{d} \end{aligned}$	$\begin{array}{ll} \left(\begin{array}{ll} H_{u}^{+} & H_{u}^{0} \end{array}\right) \\ \left(\begin{array}{ll} H_{d}^{0} & H_{d}^{-} \end{array}\right) \end{array}$	$\left.\begin{array}{ll} \left(\widetilde{H}_{u}^{+}\right. & \widetilde{H}_{u}^{0} \end{array}\right)$	$\begin{aligned} & \left(1,2,+\frac{1}{2}\right) \\ & \left(1,2,-\frac{1}{2}\right) \end{aligned}$

*The same is true if SUSY is broken spontaneously $\operatorname{Tr}\left[M_{\text {real scalar }}^{2}\right]=2 \operatorname{Tr}\left[M_{\text {chiral fermions }}^{2}\right]$

SUSY CP/flavour problem

*The same is true if SUSY is broken spontaneously $\operatorname{Tr}\left[M_{\text {real scalar }}^{2}\right]=2 \operatorname{Tr}\left[M_{\text {chiral fermions }}^{2}\right]$

SUSY CP/flavour problem

*The same is true if SUSY is broken spontaneously $\operatorname{Tr}\left[M_{\text {real scalar }}^{2}\right]=2 \operatorname{Tr}\left[M_{\text {chiral fermions }}^{2}\right]$

Origin of the SUSY CP/ flavour problem

We must start with most general Soft SUSY breaking term

$$
\begin{aligned}
& \mathcal{L}_{\text {soft }}^{\text {MSSM }}=-\frac{1}{2}\left(M_{3} \tilde{g} \tilde{g}+M_{2} \tilde{W} \tilde{W}+M_{1} \tilde{B} \tilde{B}\right)+c . c . \\
& \quad-\left(\tilde{\bar{u}} \mathbf{a}_{\mathbf{u}} \tilde{Q} H_{u}-\tilde{\bar{d}} \mathbf{a}_{\mathbf{d}} \tilde{Q} H_{d}-\tilde{\bar{d}} \mathbf{a}_{\mathbf{d}} \tilde{L} H_{d}\right)+c . c . \\
& \quad-m_{H_{u}}^{2} H_{u}^{*} H_{u}-m_{H_{d}}^{2} H_{d}^{*} H_{d}-\left(b H_{u} H_{d}+c . c\right) \\
& -\tilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^{2} \tilde{Q}-\tilde{L}^{\dagger} \mathbf{m}_{\mathbf{L}}^{2} \tilde{L}-\tilde{\bar{u}} \mathbf{m}_{\mathbf{u}}^{2} \tilde{\bar{u}}^{\dagger}-\tilde{\bar{d}} \mathbf{m}_{\mathbf{2}}^{2_{\mathbf{d}} \tilde{\bar{d}}^{\dagger}-\tilde{\bar{e}} \mathbf{m}_{\mathbf{e}}^{2} \tilde{\bar{e}}^{\dagger}}
\end{aligned}
$$

Origin of the SUSY CP/ flavour problem

Squark mass matrix

$$
\begin{aligned}
& V=\tilde{u}_{L}^{\dagger} \mathbf{M}_{\mathbf{L} \mathbf{L}}^{\mathbf{2}} \tilde{u}_{L}+\tilde{u}_{R}^{\dagger} \mathbf{M}_{\mathbf{R R}}^{\mathbf{2}} \tilde{u}_{R}+\tilde{u}_{L}^{\dagger} \mathbf{M}_{\mathbf{L R}}^{\mathbf{2}} \tilde{u}_{R}+\tilde{u}_{R}^{\dagger} \mathbf{M}_{\mathbf{R L}}^{2} \tilde{u}_{L} \\
& \mathbf{M}_{\mathbf{L L}}^{2}=\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{W}\right) \frac{g^{\prime 2}+g^{2}}{4}\left(v_{d}^{2}-v_{u}^{2}\right) \mathbf{1}+v v_{\mathbf{y _ { u } ^ { * }}}^{* 2}+\mathbf{m}_{\mathbf{Q}}^{2} \\
& \mathbf{M}_{\mathbf{R R}}^{2}=\frac{2}{3} \sin ^{2} \theta_{W} \frac{g^{\prime 2}+g^{2}}{4}\left(v_{d}^{2}-v_{u}^{2}\right) \mathbf{1}+v_{u}^{2} \mathbf{y}_{\mathbf{u}}^{* \mathbf{2}}+\mathbf{m}_{\mathbf{u}}^{2} \\
& \mathbf{M}_{\mathbf{L R}}^{2}=-\mu \cot \beta v_{u} \mathbf{y}_{\mathbf{u}}^{*}+v_{u} \mathbf{a}_{\mathbf{u}}^{*} \\
& \mathbf{M}_{\mathbf{R L}}^{2}=-\mu^{*} \cot \beta v_{u} \mathbf{y}_{\mathbf{u}}^{*}+v_{\mathbf{u}} \mathbf{a}_{\mathbf{u}}^{*}
\end{aligned}
$$

Terms from spontaneous symmetry breaking

Terms from soft SUSY breaking

By the way, what is the that mixing

Slide from the

 first day...
Diagonalization

Unitary transformation to diagonalize the Yukawa matrix

Transformation from interaction eigen-basis to mass eigen-basis

$$
U_{d}\left(Y_{d}\right)^{2} U_{d}^{\dagger}=\left(M_{d}^{2}\right)_{d i a g}
$$

| Transformation from
 interaction eigen-basis
 to mass eigen-basis |
| :---: |\(U_{d}\left(\begin{array}{c}d

s

b\end{array}\right)=\left($$
\begin{array}{c}\tilde{d} \\
\tilde{s} \\
\tilde{b}\end{array}
$$\right)\)

Origin of the SUSY CP/flavour problem

Rotating squark field with the same matrix which diagonalizes quark field

$$
U_{d}\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)_{\text {weak }}=\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)_{\text {mass }} U_{d}\left(\begin{array}{c}
\tilde{d} \\
\tilde{s} \\
\tilde{b}
\end{array}\right)_{\text {weak }}=\left(\begin{array}{c}
\tilde{d} \\
\tilde{s} \\
\tilde{b}
\end{array}\right)_{\text {mass }}
$$

$$
V=\tilde{u}_{L}^{\dagger} \mathbf{M}_{\mathbf{L} \mathbf{L}}^{2} \tilde{u}_{L}+\tilde{u}_{R}^{\dagger} \mathbf{M}_{\mathbf{R R}}^{\mathbf{2}} \tilde{u}_{R}+\tilde{u}_{L}^{\dagger} \mathbf{M}_{\mathbf{L R}}^{2} \tilde{u}_{R}+\tilde{u}_{R}^{\dagger} \mathbf{M}_{\mathbf{R L}}^{2} \tilde{u}_{L}
$$

$$
\mathbf{M}_{\mathbf{L L}}^{2}=\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{W}\right) \frac{g^{\prime 2}+g^{2}}{4}\left(v_{d}^{2}-v_{u}^{2}\right) \mathbf{1}+v^{2} \mathbf{y}_{\mathbf{u}}^{* 2}+\mathbf{m}_{\mathbf{Q}}^{2}
$$

$$
\mathbf{M}_{\mathbf{R R}}^{\mathbf{2}}=\frac{2}{3} \sin ^{2} \theta_{W} \frac{g^{\prime 2}+g^{2}}{4}\left(v_{d}^{2}-v_{u}^{2}\right) \mathbf{1}+v_{u}^{2} \mathbf{y}_{\mathbf{u}}^{* 2}+m_{\bar{u}}^{2}
$$

$$
\mathbf{M}_{\mathbf{L R}}^{2}=-\mu \cot \beta v_{u} \mathbf{y}_{\mathbf{u}}^{*}+v_{\mathfrak{u}} \mathbf{a}_{\mathbf{u}}^{*}
$$

$$
\mathbf{M}_{\mathbf{R L}}^{2}=-\mu^{*} \cot \beta v_{u} \mathbf{y}_{\mathbf{u}}^{*}+v v_{u} \mathbf{a}_{\mathbf{u}}^{*}
$$

The red terms remains non-diagonal.

Origin of the SUSY CP/flavour problem

Rotating squark field with the same matrix which diagonalizes quark field

$$
\begin{aligned}
& U_{d}\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)_{\text {weak }}=\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)_{\text {mass }} \quad U_{d}\left(\begin{array}{c}
\tilde{d} \\
\tilde{s} \\
\tilde{b}
\end{array}\right)_{\text {weak }}=\left(\begin{array}{c}
\tilde{d} \\
\tilde{\tilde{r}} \\
\tilde{b}
\end{array}\right)_{\text {mass }} \\
& V=\tilde{u}_{L}^{\dagger} \mathbf{M}_{\mathbf{L L}}^{2} \tilde{u}_{L}+\tilde{u}_{R}^{\dagger} \mathbf{M}_{\mathbf{R R}}^{2} \tilde{u}_{R}+\tilde{u}_{L}^{\dagger} \mathbf{M}_{\mathbf{L R}}^{2} \tilde{u}_{R}+\tilde{u}_{R}^{\dagger} \mathbf{M}_{\mathbf{R L}}^{2} \tilde{u}_{L} \\
& \left.\mathbf{M}_{\mathbf{L L}}^{2}=\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{W}\right) \frac{g^{\prime 2}+g^{2}}{4}\left(v_{d}^{2}-v_{u}^{2}\right) \mathbf{1}+v \mathbf{y}_{\mathbf{u}}^{*}\right)^{2}+\mathrm{m}_{\mathrm{Q}}^{2} \\
& \mathbf{M}_{\mathbf{R R}}^{2}=\frac{2}{3} \sin ^{2} \theta_{W} \frac{g^{\prime 2}+g^{2}}{4}\left(v_{d}^{2}-v_{u}^{2}\right) \mathbf{1}+v_{2}^{2} \sqrt[\mathbf{y}_{u}^{* 2}]{\left(\mathbf{m}_{\bar{u}}^{2}\right)} \\
& \mathbf{M}_{\mathbf{L R}}^{2}=-\mu \cot \beta v_{u} \mathbf{y}_{\mathbf{u}}^{*}+v_{\mathbf{a}}^{*} \\
& \mathbf{M}_{\mathbf{R L}}^{2}=-\mu^{*} \cot \beta v_{u} \mathbf{y}_{\mathbf{u}}^{*}+v \mathbf{v a}_{\mathbf{u}}^{*}
\end{aligned}
$$

Squark is not on the mass eigen-basis

Flavour mixture in the propagator

Origin of the SUSY CP/flavour problem

Rotating squark field with the same matrix which diagonalizes quark field

Squark is not on the mass eigen-basis

Flavour mixture in the propagator

Avoiding SUSY CP/flavour problem

$$
\begin{aligned}
& V=\tilde{u}_{L}^{\dagger} \mathbf{M}_{\mathbf{L L}}^{2} \tilde{u}_{L}+\tilde{u}_{R}^{\dagger} \mathbf{M}_{\mathbf{R R}}^{2} \tilde{u}_{R}+\tilde{u}_{L}^{\dagger} \mathbf{M}_{\mathbf{L R}}^{2} \tilde{u}_{R}+\tilde{u}_{R}^{\dagger} \mathbf{M}_{\mathbf{R L}}^{2} \tilde{u}_{L} \\
& \mathbf{M}_{\mathbf{L L}}^{2}=\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{W}\right) \frac{g^{\prime 2}+g^{2}}{4}\left(v_{d}^{2}-v_{u}^{2}\right) \mathbf{1}+v \mathbf{y}_{\mathbf{u}}^{* 2}+\mathbf{m}_{\mathbf{Q}}^{2} \\
& \mathbf{M}_{\mathbf{R R}}^{2}=\frac{2}{3} \sin ^{2} \theta_{W} \frac{g^{\prime 2}+g^{2}}{4}\left(v_{d}^{2}-v_{u}^{2}\right) \mathbf{1}+v_{u}^{2} \mathbf{y}_{\mathbf{u}}^{* 2}+\mathbf{m}_{\mathbf{u}}^{2} \\
& \mathbf{M}_{\mathbf{L R}}^{2}=-\mu \cot \beta v_{u} \mathbf{y}_{\mathbf{u}}^{*}+v_{u}^{*} \mathbf{a}_{\mathbf{u}}^{*} \\
& \mathbf{M}_{\mathbf{R L}}^{2}=-\mu^{*} \cot \beta v_{u} \mathbf{y}_{\mathbf{u}}^{*}+v \mathbf{a}_{\mathbf{u}}^{*}
\end{aligned}
$$

Fix the SUSY breaking parameters so that the red terms can be diagonalized together with the blue terms

$$
\begin{gathered}
\mathbf{m}_{\mathbf{Q}}^{\mathbf{2}}=m_{Q}^{2} \mathbf{1}, \mathbf{m}_{\mathbf{L}}^{\mathbf{2}}=m_{L}^{2} \mathbf{1}, \mathbf{m}_{\overline{\mathbf{u}}}^{\mathbf{2}}=m_{\bar{u}}^{2} \mathbf{1}, \mathbf{m}_{\mathbf{d}}^{\mathbf{2}}=m_{d}^{2} \mathbf{1}, \mathbf{m}_{\overline{\mathbf{e}}}^{\mathbf{2}}=m_{\bar{e}}^{2} \mathbf{1} \\
\mathbf{a}_{\mathbf{u}}=A_{u 0} \mathbf{y}_{\mathbf{u}}, \quad \mathbf{a}_{\mathbf{d}}=A_{u 0} \mathbf{\mathbf { y } _ { \mathbf { d } }}, \quad \mathbf{a}_{\mathbf{e}}=A_{u 0} \mathbf{y}_{\mathbf{e}} \\
\arg \left(M_{1 \sim 3}\right), \arg \left(A_{u 0}\right), \arg \left(A_{d 0}\right), \arg \left(A_{e 0}\right)=0, \text { or } \pi \\
\text { mSUGRA }
\end{gathered}
$$

Constraining the Soft SUSY parameters from flavour physics

Squark mass matrix

$$
\begin{aligned}
& V=\tilde{u}_{L}^{\dagger} \mathbf{M}_{\mathbf{L L}}^{2} \tilde{u}_{L}+\tilde{u}_{R}^{\dagger} \mathbf{M}_{\mathbf{R R}}^{2} \tilde{u}_{R}+\tilde{u}_{L}^{\dagger} \mathbf{M}_{\mathbf{L R}}^{2} \tilde{u}_{R}+\tilde{u}_{R}^{\dagger} \mathbf{M}_{\mathbf{R L}}^{2} \tilde{u}_{L} \\
& \mathbf{M}_{\mathbf{L L}}^{2}=\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{W}\right) \frac{g^{\prime 2}+g^{2}}{4}\left(v_{d}^{2}-v_{u}^{2}\right) \mathbf{1}+v_{u}^{2} \mathbf{y}_{\mathbf{u}}^{* 2}+\mathbf{m}_{\mathbf{Q}}^{2} \\
& \mathbf{M}_{\mathbf{R R}}^{2}=\frac{2}{3} \sin ^{2} \theta_{W} \frac{g^{\prime 2}+g^{2}}{4}\left(v_{d}^{2}-v_{u}^{2}\right) \mathbf{1}+v_{u}^{2} \mathbf{y}_{\mathbf{u}}^{* 2}+\mathbf{m}_{\overline{\mathbf{u}}}^{2} \\
& \mathbf{M}_{\mathbf{L R}}^{2}=-\mu \cot \beta v_{u} \mathbf{y}_{\mathbf{u}}^{*}+v_{u} \mathbf{a}_{\mathbf{u}}^{*} \\
& \mathbf{M}_{\mathbf{R L}}^{2}=-\mu^{*} \cot \beta v_{u} \mathbf{y}_{\mathbf{u}}^{*}+v_{u} \mathbf{a}_{\mathbf{u}}^{*}
\end{aligned}
$$

Instead of (artificially) choosing the parameters, why don't we constrain from the flavour phenomena, first?!

Constraining the Soft SUSY parameters from flavour physics

$$
\begin{gathered}
\mathbf{m}_{\mathrm{AB}}^{2 \mathrm{SCKM}}=\left(\begin{array}{ccc}
\left(m_{A B}^{2}\right)_{11} & \left(\Delta_{A B}\right)_{12} & \left(\Delta_{A B}\right)_{13} \\
\left(\Delta_{A B}\right)_{21} & \left(m_{A B}^{2}\right)_{22} & \left(\Delta_{A B}\right)_{23} \\
\left(\Delta_{A B}\right)_{31} & \left(\Delta_{A B}\right)_{32} & \left(m_{A B}^{2}\right)_{33}
\end{array}\right) \\
\frac{\left(\Delta_{A B}\right)_{i j}}{m \equiv\left(\delta_{A B}\right)_{i j}}
\end{gathered}
$$

Mass Insertion Parameter

$$
\begin{aligned}
\left(\delta_{A B}\right)_{12} & \longrightarrow \Delta m_{K}, \quad \epsilon, \quad \epsilon^{\prime} / \epsilon \\
\left(\delta_{A B}\right)_{13} & \longrightarrow \Delta m_{B_{d}}, \quad A_{C P}\left(B \rightarrow J / \psi K_{S}\right) \\
\left(\delta_{A B}\right)_{23} & \longrightarrow \Delta m_{B_{s}}, \quad b \rightarrow s \gamma, \quad A_{C P}\left(B \rightarrow \phi K_{S}\right)
\end{aligned}
$$

$\left(\delta_{A B}\right)_{23}$ determination

Bs-Bs oscillation

$$
\mathrm{b} \rightarrow \mathrm{~s} \gamma
$$

New particle searches in flavour physics ~hot topics~

$$
\begin{gathered}
B_{s} \rightarrow \mu^{+} \mu^{-} \\
A_{S L}^{b} \\
S_{B_{s} \rightarrow J / \psi \phi}\left(=\sin 2 \beta_{s}\right)
\end{gathered}
$$

SUSY particle contributions to

$$
B_{s} \rightarrow \mu^{+} \mu^{-}
$$

SUSY particle contributions to

$$
B_{s} \rightarrow \mu^{+} \mu^{-}
$$

$\operatorname{Br}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{MSSM}}$

$$
=\frac{m_{b}^{2} m_{\mu}^{2} \tan ^{6} \beta}{M_{A_{0}}^{4}}
$$

It could be large if $\tan \beta$ is large

SUSY particle contributions to

$B_{s} \rightarrow \mu^{+} \mu^{-}$

SUSY particle contributions to

$B_{s} \rightarrow \mu^{+} \mu^{-}$

Excitement in the summer 2011!!!

Early summer, CDF ($7 \mathrm{fb}^{-1}$) announced...

$$
\operatorname{Br}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\left(1.8_{-0.9}^{+1.1}\right) \times 10^{-8}
$$

No significant excess seen		
	Barrel	Endcap
this is $\quad N_{\text {signal }}^{\text {exp }}$	0.80 ± 0.16	0.36 ± 0.07
$\mathrm{B} \rightarrow \mathrm{hh} \sqrt{ } N_{\text {bs }}^{\text {exp }}$	0.60 ± 0.35	0.80 ± 0.40
$N_{\text {peak }}^{\text {depp }}$	0.07 ± 0.02	0.04 ± 0.01
$N_{\text {obs }}$	2	1

Calculate upper limits using frequentist CLs approach and taking $\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{u}}=0.282 \pm 0.037$ [PDG]

Expected limit at 95\% C.L.
(including presence of SM signal)
Observed limit at 95\% (90\%) C.L.
p-value of bckgd only hypothesis

arXive:I I 07.2304

SUSY particle contributions to

$B_{s} \rightarrow \mu^{+} \mu^{-}$

Excitement in the summer 2011!!!

Early summer, CDF (7fb-l) announced...

$$
\operatorname{Br}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\left(1.8_{-0.9}^{+1.1}\right) \times 10^{-8}
$$

SUSY particle contributions to

$B_{s} \rightarrow \mu^{+} \mu^{-}$

So far we don't see it. But then...

Observed limit at 95\% (

This is 3.4 times the exp
A BR of 1.8×10^{-8} has a ELs value of $\sim 0.3 \%$

New particle contributions to Bs oscillation

New particle contributions to Bs oscillation

$S_{J / \psi \phi}=\operatorname{Im}[\underbrace{\frac{q}{p}}_{\text {oscill. }} \underbrace{\frac{A\left(\overline{B_{s}} \rightarrow J / \psi \phi\right)}{A\left(B_{s} \rightarrow J / \psi \phi\right)}}_{\text {decay }}]$
$\simeq \operatorname{Im}[\underbrace{\frac{\delta_{L L}^{23}}{\delta_{L L}^{23 *}}}_{\text {oscill. }} \underbrace{\frac{V_{c b} V_{c s}^{*}}{V_{c b}^{*} V_{c s}}}_{\text {decay }}]$
$=\sin 2 \beta_{s}$
β_{s} can be large in
$S_{J / \psi \phi}=\operatorname{Im}[\underbrace{\frac{q}{p}}_{\text {oscill. }} \underbrace{\frac{A\left(\overline{B_{s}} \rightarrow J / \psi \phi\right)}{A\left(B_{s} \rightarrow J / \psi \phi\right)}}_{\text {decay }}]$
$=\operatorname{Im}\left[\begin{array}{lll}{\left[\begin{array}{ll}V_{t b} V_{t s}^{*} & V_{c b} V_{c s}^{*} \\ \underbrace{*}_{\text {oscill. }} V_{t s} & \text { decay }\end{array}\right]} \\ V_{c b}^{*} V_{c s} \\ V_{s}\end{array}\right]$
$=\sin 2 \beta_{s}$
BSA

$$
\beta_{s}=10 \text { in } S M
$$

Bs oscillation measurement at $\mathrm{LHC} /$ Tevatron $\mathrm{I}: \mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \Phi$

$x=\frac{\Delta m}{\Gamma}$
0.776
$y=\frac{\Delta \Gamma}{2 \Gamma}<0.01^{*}$

26.1

Freq. of oscillation

Difference between the Bd/Bs system
$\sqrt{ }$ Bs oscillation is much faster (we need more Lorentz boost=LHC/ Tevatron!) \checkmark Non-negligible width difference modify the master formula

Bs oscillation measurement at $\mathrm{LHC} /$ Tevatron $\mathrm{I}: \mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \Phi$

Bs oscillation measurement at LHC/Tevatron II: dimuon charge asymmetry

Direct semileptonic decay

Neutral B meson oscillation and then semileptonic decay

- Measure $C P$ violation in mixing via

$$
A_{s l}^{b}=\frac{N_{b}\left(\mu^{+} \mu^{+}\right)-N_{b}\left(\mu^{-} \mu^{-}\right)}{N_{b}\left(\mu^{+} \mu^{+}\right)+N_{b}\left(\mu^{-} \mu^{-}\right)}
$$

- DØ: Evidence for anomalous dimuon charge asymmetry, (6 fb ${ }^{-1}$, PRL 105, 081801 (2010)) 3.2 σ deviation from $A_{s l}^{b}(S M)=\left(-0.023_{-0.006}^{+0.005}\right) \%$

Bs oscillation measurement at LHC/Tevatron II: dimuon charge asymmetry

Bs oscillation measurement at LHC/Tevatron II: dimuon charge asymmetry

One can compare to the B_{s} oscillation measurement from $B_{s} \rightarrow J / \Psi \Phi$

$$
a_{\mathrm{sl}}^{s}=\frac{\left|\Gamma_{s}^{12}\right|}{\left|M_{s}^{12}\right|} \sin \phi_{s}=\frac{\Delta \Gamma_{s}}{\Delta M_{s}} \tan \phi_{s}^{\prime}
$$

