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Plan

• 1st lecture: Introduction to flavour physics

★ Weak interaction processes (charges, neutral 
processes, GIM mechanism)

★ Discovery of CP violation in the K system

★ Measuring oscillation in the B system

• 2nd lecture: Describing oscillations within SM

★ Kobayashi-Maskawa mechanism for CP violation

★ Testing the unitarity of the CKM matrix



Plan

• 3rd lecture:  Searching new physics with flavour 
physics 

★ Some examples (estimating top quark mass, charged 
Higgs mass in 2HDM, neutral Higgs mass in SUSY)

★ SUSY CP/flavour Problem

★ Hot topics in flavour physics

Further reading:  “CP  Violation” Bigi and Sanda (Cambridge Press)



New particle searches 
in flavour physics



Figure 11: Box vertices resolved in terms of elementary vertices

• The effective vertices depend on the masses of internal quarks or leptons and conse-

quently are calculable functions of

xi =
m2

i

M2
W

, i = u, c, t. (3.10)

A set of basic universal functions can be found. These functions govern the physics of

all FCNC processes. They are given below.

• The effective vertices depend on elements of the CKM matrix and this dependence can

be found directly from the diagrams of figs. 9 and 11.

• The dependences of a given vertex on the CKM factors and the masses of internal

fermions govern the strength of the vertex in question.

• Another new feature of the effective vertices as compared with the elementary vertices

is their dependence on the gauge used for the W± propagator. We will return to this

point below.

3.2.4 Basic Functions

The basic functions present in (3.1)-(3.8) were calculated by various authors, in particular

by Inami and Lim [45]. They are given explicitly as follows:

B0(xt) =
1

4

[
xt

1 − xt
+

xt ln xt

(xt − 1)2

]
(3.11)
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B0(x) C0(x) D’0(x), S0(x)

loop function
x=mt2/mW2

Indeed, the top quark mass was predicted to 
be around >100 GeV after the first 

measurement of ΔMd (1987 by ARGUS Experiment)



Figure 11: Box vertices resolved in terms of elementary vertices

• The effective vertices depend on the masses of internal quarks or leptons and conse-

quently are calculable functions of

xi =
m2

i

M2
W

, i = u, c, t. (3.10)

A set of basic universal functions can be found. These functions govern the physics of

all FCNC processes. They are given below.

• The effective vertices depend on elements of the CKM matrix and this dependence can

be found directly from the diagrams of figs. 9 and 11.

• The dependences of a given vertex on the CKM factors and the masses of internal

fermions govern the strength of the vertex in question.

• Another new feature of the effective vertices as compared with the elementary vertices

is their dependence on the gauge used for the W± propagator. We will return to this

point below.

3.2.4 Basic Functions

The basic functions present in (3.1)-(3.8) were calculated by various authors, in particular

by Inami and Lim [45]. They are given explicitly as follows:

B0(xt) =
1

4

[
xt

1 − xt
+

xt ln xt

(xt − 1)2

]
(3.11)

27

b

s

Bs t

μ

μ

ν

Figure 11: Box vertices resolved in terms of elementary vertices

• The effective vertices depend on the masses of internal quarks or leptons and conse-

quently are calculable functions of

xi =
m2

i

M2
W

, i = u, c, t. (3.10)

A set of basic universal functions can be found. These functions govern the physics of

all FCNC processes. They are given below.

• The effective vertices depend on elements of the CKM matrix and this dependence can

be found directly from the diagrams of figs. 9 and 11.

• The dependences of a given vertex on the CKM factors and the masses of internal

fermions govern the strength of the vertex in question.

• Another new feature of the effective vertices as compared with the elementary vertices

is their dependence on the gauge used for the W± propagator. We will return to this

point below.

3.2.4 Basic Functions

The basic functions present in (3.1)-(3.8) were calculated by various authors, in particular

by Inami and Lim [45]. They are given explicitly as follows:

B0(xt) =
1

4

[
xt

1 − xt
+

xt ln xt

(xt − 1)2

]
(3.11)

27

b

q

Bq t

b

t

q

Bq

b s
t

W±

γ, Z0

Searching new particle with loop 
process

B0(x) S0(x)  C0(x), D’0(x)

100 200 300 400 500
0

1

2

3

4

5

6

S0�x��S0�x0�
D'0�x��D'0�x0�
C0�x��C0�x0�
B0�x��B0�x0�

m (GeV)

f 0
(m

)/
f 0

(m
t)

top quark

heavier quark



Figure 11: Box vertices resolved in terms of elementary vertices

• The effective vertices depend on the masses of internal quarks or leptons and conse-

quently are calculable functions of

xi =
m2

i

M2
W

, i = u, c, t. (3.10)

A set of basic universal functions can be found. These functions govern the physics of

all FCNC processes. They are given below.

• The effective vertices depend on elements of the CKM matrix and this dependence can

be found directly from the diagrams of figs. 9 and 11.

• The dependences of a given vertex on the CKM factors and the masses of internal

fermions govern the strength of the vertex in question.

• Another new feature of the effective vertices as compared with the elementary vertices

is their dependence on the gauge used for the W± propagator. We will return to this

point below.

3.2.4 Basic Functions

The basic functions present in (3.1)-(3.8) were calculated by various authors, in particular

by Inami and Lim [45]. They are given explicitly as follows:

B0(xt) =
1

4

[
xt

1 − xt
+

xt ln xt

(xt − 1)2

]
(3.11)

27

b

s

Bs t

μ

μ

ν

Figure 11: Box vertices resolved in terms of elementary vertices

• The effective vertices depend on the masses of internal quarks or leptons and conse-

quently are calculable functions of

xi =
m2

i

M2
W

, i = u, c, t. (3.10)

A set of basic universal functions can be found. These functions govern the physics of

all FCNC processes. They are given below.

• The effective vertices depend on elements of the CKM matrix and this dependence can

be found directly from the diagrams of figs. 9 and 11.

• The dependences of a given vertex on the CKM factors and the masses of internal

fermions govern the strength of the vertex in question.

• Another new feature of the effective vertices as compared with the elementary vertices

is their dependence on the gauge used for the W± propagator. We will return to this

point below.

3.2.4 Basic Functions

The basic functions present in (3.1)-(3.8) were calculated by various authors, in particular

by Inami and Lim [45]. They are given explicitly as follows:

B0(xt) =
1

4

[
xt

1 − xt
+

xt ln xt

(xt − 1)2

]
(3.11)

27

b

q

Bq t

b

t

q

Bq

b s
t

W±

γ, Z0

Searching new particle with loop 
process

B0(x) S0(x)  C0(x), D’0(x)

100 200 300 400 500
0

1

2

3

4

5

6

S0�x��S0�x0�
D'0�x��D'0�x0�
C0�x��C0�x0�
B0�x��B0�x0�

m (GeV)

f 0
(m

)/
f 0

(m
t)

top quark

heavier quark

Indirect search of the 
heavy new particles 

= Search of excess in flavour 
physics 



New physics contributions to 
the b ➔ s γ process
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J+
µ = VCKMULγµDL =

�

i,j

Vijuiγµ(1− γ5)dj

SM computation of the b ➔ s γ 
process

/4



b s
t

W±

γ

LCC =
g√
2
(J+

µ W−µ + J−µ W+µ)

J+
µ = VCKMULγµDL =

�

i,j
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SM computation of the b ➔ s γ 
process

b̄Aµs = −iVtbV
∗
ts

GF e

8π2
√

2
D�

0(xt)s̄ [iσµνqν [mb(1 + γ5)]] b

loop function
x=mt2/mW2

C0(xt) =
xt

8

[
xt − 6

xt − 1
+

3xt + 2

(xt − 1)2
ln xt

]
(3.12)

D0(xt) = −
4

9
ln xt +

−19x3
t + 25x2

t

36(xt − 1)3
+

x2
t (5x

2
t − 2xt − 6)

18(xt − 1)4
ln xt (3.13)

E0(xt) = −
2

3
ln xt +

x2
t (15 − 16xt + 4x2

t )

6(1 − xt)4
lnxt +

xt(18 − 11xt − x2
t )

12(1 − xt)3
(3.14)

D′
0(xt) = −

(8x3
t + 5x2

t − 7xt)

12(1 − xt)3
+

x2
t (2 − 3xt)

2(1 − xt)4
ln xt (3.15)

E′
0(xt) = −

xt(x2
t − 5xt − 2)

4(1 − xt)3
+

3

2

x2
t

(1 − xt)4
ln xt (3.16)

S0(xt) =
4xt − 11x2

t + x3
t

4(1 − xt)2
−

3x3
t ln xt

2(1 − xt)3
(3.17)

S0(xc) = xc (3.18)

S0(xc, xt) = xc

[

ln
xt

xc
−

3xt

4(1 − xt)
−

3x2
t ln xt

4(1 − xt)2

]

. (3.19)

We would like to make a few comments:

• In the last two expressions we have kept only linear terms in xc " 1, but of course

all orders in xt. The last function generalizes S0(xt) in (3.17) to include box diagrams

with simultaneous top-quark and charm-quark exchanges.

• The subscript “0” indicates that these functions do not include QCD corrections to the

relevant penguin and box diagrams. These corrections will be discussed in detail in

subsequent sections.

• In writing the expressions in (3.11)-(3.19) we have omitted xt–independent terms which

do not contribute to decays due to the GIM mechanism. We will discuss this issue in

more detail below. Moreover

S0(xt) ≡ F (xt, xt) + F (xu, xu) − 2F (xt, xu) (3.20)

and

S0(xi, xj) = F (xi, xj) + F (xu, xu) − F (xi, xu) − F (xj , xu), (3.21)

where F (xi, xj) is the true function corresponding to a given box diagram with i and j

quark exchanges. These particular combinations can be found by drawing all possible

box diagrams (also those with u-quark exchanges), setting mu = 0 and using unitarity

of the CKM-matrix which implies in particular the relation:

λu + λc + λt = 0. (3.22)

In this way the effective Hamiltonians for FCNC transitions can be directly obtained

by summing only over t and c quarks.

28
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2.5 Two-Higgs-Doublet Models

Next we turn to two-Higgs-doublet models (2HDM), where we examine two dis-

tinct models which naturally avoid tree-level flavor changing neutral currents. In

Model I, one doublet (φ2) generates masses for all fermions and the other doublet

(φ1) decouples from the fermion sector. In the second model (Model II) φ2 gives

mass to the up-type quarks, while the down-type quarks and charged leptons re-

ceive their mass from φ1. Each doublet obtains a vacuum expectation value (vev)

vi, subject to the constraint that v2
1 + v2

2 = v2, where v is the usual vev present in

the SM. The charged Higgs boson interactions with the quark sector are governed

by the Lagrangian

L =
g

2
√

2MW

H±
[

VijmuiAuūi(1 − γ5)dj + VijmdjAdūi(1 + γ5)dj

]

+ h.c. , (8)

where g is the usual SU(2) coupling constant and Vij represents the appropriate

CKM element. In model I, Au = cotβ and Ad = − cot β, while in model II,

Au = cot β and Ad = tanβ, where tanβ ≡ v2/v1 is the ratio of vevs. In both

models, the H± contributes to b → sγ via virtual exchange together with the

top-quark, and the dipole b → s operators O7,8 receive contributions from this

exchange. At the W scale the coefficients of these operators take the generic form

c7,8(MW ) = G7,8(m
2
t/M

2
W ) +

1

3 tan2 β
G7,8(m

2
t /m

2
H±) + λF7,8(m

2
t /m

2
H±) , (9)

where λ = −1/ tan β, +1 in Model I and II, respectively. The analytic form of

the functions F7,8 can be found in Ref. 23. Since the H± contributions all scale

as cot2 β in Model I, enhancements to the SM decay rate only occurs for small

values of tanβ. The relative minus sign between the two H± contributions in

this model also gives a destructive interference for some values of the parameters.

Consistency with the CLEO lower and upper limits excludes24 the shaded regions

in the mH±−tanβ parameter plane presented in Fig. 5a, assuming mt = 150 GeV.

Here, the shaded region on the left results from the CLEO upper bound and the

shaded slice in the middle is from the lower limit. In Model II, large enhancements

also appear for small values of tanβ, but more importantly, B(b → sγ) is always

larger than that of the SM, independent of the value of tanβ. This is due to the

+ tanβ scaling of the F7,8 term in Eq. (9). In this case the CLEO upper bound

excludes24,25 the region to the left and beneath the curves shown in Fig. 5b for

the various values of mt as indicated. In this case, the bounds are quite sensitive12

Φ1=(Φ0,Φ+)1 ➞v1;   Φ2=(Φ0,Φ+)2 ➞v2

tanβ=v2/v1,   v12+ v12=v2

Type I:  Au=cotβ, Ad=-cotβ
Type II:  Au=cotβ, Ad=tanβ

γ
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Now the loop function looks like... 

The measurement of  b ➔ s γ can give prediction 
orconstraint on the Higgs mass and tanβ
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]

+ h.c. , (8)

where g is the usual SU(2) coupling constant and Vij represents the appropriate

CKM element. In model I, Au = cotβ and Ad = − cot β, while in model II,

Au = cot β and Ad = tanβ, where tanβ ≡ v2/v1 is the ratio of vevs. In both

models, the H± contributes to b → sγ via virtual exchange together with the

top-quark, and the dipole b → s operators O7,8 receive contributions from this

exchange. At the W scale the coefficients of these operators take the generic form

c7,8(MW ) = G7,8(m
2
t/M

2
W ) +

1

3 tan2 β
G7,8(m

2
t /m

2
H±) + λF7,8(m

2
t /m

2
H±) , (9)

where λ = −1/ tan β, +1 in Model I and II, respectively. The analytic form of

the functions F7,8 can be found in Ref. 23. Since the H± contributions all scale

as cot2 β in Model I, enhancements to the SM decay rate only occurs for small

values of tanβ. The relative minus sign between the two H± contributions in

this model also gives a destructive interference for some values of the parameters.

Consistency with the CLEO lower and upper limits excludes24 the shaded regions

in the mH±−tanβ parameter plane presented in Fig. 5a, assuming mt = 150 GeV.

Here, the shaded region on the left results from the CLEO upper bound and the

shaded slice in the middle is from the lower limit. In Model II, large enhancements

also appear for small values of tanβ, but more importantly, B(b → sγ) is always

larger than that of the SM, independent of the value of tanβ. This is due to the

+ tanβ scaling of the F7,8 term in Eq. (9). In this case the CLEO upper bound

excludes24,25 the region to the left and beneath the curves shown in Fig. 5b for

the various values of mt as indicated. In this case, the bounds are quite sensitive12

Φ1=(Φ0,Φ+)1 ➞v1;   Φ2=(Φ0,Φ+)2 ➞v2

tanβ=v2/v1,   v12+ v12=v2

Type I:  Au=cotβ, Ad=-cotβ
Type II:  Au=cotβ, Ad=tanβ

2.5 Two-Higgs-Doublet Models

Next we turn to two-Higgs-doublet models (2HDM), where we examine two dis-

tinct models which naturally avoid tree-level flavor changing neutral currents. In

Model I, one doublet (φ2) generates masses for all fermions and the other doublet

(φ1) decouples from the fermion sector. In the second model (Model II) φ2 gives

mass to the up-type quarks, while the down-type quarks and charged leptons re-

ceive their mass from φ1. Each doublet obtains a vacuum expectation value (vev)

vi, subject to the constraint that v2
1 + v2

2 = v2, where v is the usual vev present in

the SM. The charged Higgs boson interactions with the quark sector are governed

by the Lagrangian

L =
g

2
√

2MW

H±
[
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+ h.c. , (8)

where g is the usual SU(2) coupling constant and Vij represents the appropriate

CKM element. In model I, Au = cotβ and Ad = − cot β, while in model II,

Au = cot β and Ad = tanβ, where tanβ ≡ v2/v1 is the ratio of vevs. In both

models, the H± contributes to b → sγ via virtual exchange together with the

top-quark, and the dipole b → s operators O7,8 receive contributions from this

exchange. At the W scale the coefficients of these operators take the generic form

c7,8(MW ) = G7,8(m
2
t/M

2
W ) +

1

3 tan2 β
G7,8(m

2
t /m

2
H±) + λF7,8(m

2
t /m

2
H±) , (9)
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squark mass splitting due to the potentially sizeable off-diagonal terms in the

stop mass matrix. The chargino-squark contributions to the Wilson coefficients

for the b → s transition dipole operators are given by28,29
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where m̃χ±

j
represents the chargino masses, m̃ the up and charm squark masses,

m̃tk the stop-squark masses, Uij and Vij are the unitary matrices which diagonal-

ize the chargino mass matrix, and Tkl diagonalizes the stop-squark mass matrix.

These all are calculable in terms of the supersymmetry parameters listed above.

The functions H7,8 are given in Refs. 26,28,29. Contours of B(b → sγ), including

the SM, H±, and χ̃± contributions, are displayed in Fig. 6 from Garisto and

Ng29 in the mλ − µ parameter plane for four values of A = ±1,±2 and taking

m0 = 100 GeV, mt = 140 GeV, and tanβ = 10. It is immediately clear from the

figure, that regions of parameter space do exist where B(b → sγ)SUSY is at or

below the SM value and is consistent with the CLEO bounds. It is found that

the stop-squark and chargino contributions have a large destructive interfere with

the SM and H± contributions when t̃1 is light (i.e., when there is a large stop

mass splitting), tanβ is large, and Aµ < 0. However, if all the up-type squarks

are degenerate, the chargino contributions exactly cancel due to a SUSY-GIM

mechanism. In this case, the H± mass is constrained to be large as shown in the

previous section.

2.7 Three-Higgs-Doublet Models

New CP violating phases are present in models with three or more scalar dou-

blets. These phases appear in charged scalar exchange and can influence CP

asymmetries in neutral B decays, even if the Yukawa couplings obey natural fla-

vor conservation.30 For example, in a three-Higgs-Doublet model (3HDM) one

can avoid tree-level flavor changing neutral currents by requiring that a different
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Sensitivity to individual observables

How big is the influence of b → sγ?
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SUSY CP/flavour problem
Table 1: Chiral supermultiplets in the Minimal Supersymmetric Standard Model.

Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6)

(×3 families) u ũ∗
R u†

R ( 3, 1, −2
3)

d d̃∗R d†R ( 3, 1, 1
3)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2)

(×3 families) e ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2)

Hd (H0
d H−

d ) (H̃0
d H̃−

d ) ( 1, 2 , −1
2)

gauge symmetry would suffer a triangle gauge anomaly, and would be inconsistent as a
quantum theory. This is because the conditions for cancellation of gauge anomalies include
Tr[Y 3] = Tr[T 2

3 Y ] = 0, where T3 and Y are the third component of weak isospin and the
weak hypercharge, respectively, in a normalization where the ordinary electric charge is
QEM = T3 +Y . The traces run over all of the left-handed Weyl fermionic degrees of freedom
in the theory. In the Standard Model, these conditions are already satisfied, somewhat
miraculously, by the known quarks and leptons. Now, a fermionic partner of a Higgs chiral
supermultiplet must be a weak isodoublet with weak hypercharge Y = 1/2 or Y = −1/2. In
either case alone, such a fermion will make a non-zero contribution to the traces and spoil
the anomaly cancellation. This can be avoided if there are two Higgs supermultiplets, one
with each of Y = ±1/2. In that case the total contribution to the anomaly traces from the
two fermionic members of the Higgs chiral supermultiplets will vanish. As we will see in
section 5.1, both of these are also necessary for another completely different reason: because
of the structure of supersymmetric theories, only a Y = +1/2 Higgs chiral supermultiplet
can have the Yukawa couplings necessary to give masses to charge +2/3 up-type quarks (up,
charm, top), and only a Y = −1/2 Higgs can have the Yukawa couplings necessary to give
masses to charge −1/3 down-type quarks (down, strange, bottom) and to charged leptons.
We will call the SU(2)L-doublet complex scalar fields corresponding to these two cases Hu

and Hd respectively.‡ The weak isospin components of Hu with T3 = (+1/2, −1/2) have
electric charges 1, 0 respectively, and are denoted (H+

u , H0
u). Similarly, the SU(2)L-doublet

complex scalar Hd has T3 = (+1/2, −1/2) components (H0
d , H−

d ). The neutral scalar that
corresponds to the physical Standard Model Higgs boson is in a linear combination of H0

u

and H0
d ; we will discuss this further in section 7.2. The generic nomenclature for a spin-

1/2 superpartner is to append “-ino” to the name of the Standard Model particle, so the
fermionic partners of the Higgs scalars are called higgsinos. They are denoted by H̃u, H̃d

for the SU(2)L-doublet left-handed Weyl spinor fields, with weak isospin components H̃+
u ,

H̃0
u and H̃0

d , H̃−
d .

We have now found all of the chiral supermultiplets of a minimal phenomenologi-
cally viable extension of the Standard Model. They are summarized in Table 1, classi-
fied according to their transformation properties under the Standard Model gauge group

‡Other notations which are popular in the literature have Hd, Hu → H1, H2 or H,H . The one used here has
the virtue of making it easy to remember which Higgs is responsible for giving masses to which quarks.
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flavour problem
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We must start with most general Soft SUSY breaking term

The SUSY breaking term 
introduces 105 new masses, 

mixings and phases. 



Origin of the SUSY CP/
flavour problem

Squark mass matrix

V = ũ
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Terms from spontaneous 
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By the way, what is the origin of 
that mixing ?

Diagonalization
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to diagonalize the 

Yukawa matrix

Transformation from 
interaction eigen-basis 

to mass eigen-basis 
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Slide from the 
first day... 
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The red terms remains 
non-diagonal.
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LRũR + ũ
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Origin of the SUSY CP/flavour 
problem

Squark is not on the 
mass eigen-basis

Flavour mixture in 
the propagator
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†
L
M

2
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RLũL

M2
LL = (

1

2
−

2

3
sin2 θW )

g′2 + g2

4
(v2

d − v2

u)1 + v2

uy
∗2
u + m2

Q

M2
RR =

2

3
sin2 θW

g′2 + g2

4
(v2

d − v2

u)1 + v2

uy
∗2
u + m2

u

M2
LR = −µ cot βvuy

∗

u + vua
∗

u

M2
RL = −µ∗ cot βvuy

∗

u + vua
∗

u

Rotating squark field with the same matrix which diagonalizes quark field 

Ud




d
s
b





weak

=




d
s
b





mass

Ud




d̃
s̃
b̃





weak

=




d̃
s̃
b̃





mass

Origin of the SUSY CP/flavour 
problem

Squark is not on the 
mass eigen-basis

Flavour mixture in 
the propagator

b̃ s̃

example
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Avoiding SUSY CP/flavour problem 1

m
2
Q = m

2

Q1,m
2
L = m

2

L1,m
2
u = m

2

u1,m
2

d
= m

2

d
1,m

2
e = m

2

e1

au = Au0yu, ad = Au0yd, ae = Au0ye

arg(M1∼3), arg(Au0), arg(Ad0), arg(Ae0) = 0, or π

Assumption
Fix the SUSY breaking parameters so that 
the red terms can be diagonalized together 

with the blue terms

e.g. 
mSUGRA



Constraining the Soft SUSY 
parameters from flavour physics

Squark mass matrix
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Instead of (artificially) choosing the parameters, why don’t 
we constrain from the flavour phenomena, first?! 



Constraining the Soft SUSY 
parameters from flavour physics

m
2SCKM

AB =





(m2
AB

)11 (∆AB)12 (∆AB)13
(∆AB)21 (m2

AB
)22 (∆AB)23

(∆AB)31 (∆AB)32 (m2
AB

)33





(∆AB)ij

msquark
≡ (δAB)ij

Mass Insertion Parameter

(δAB)12 −→ ∆mK , ε, ε′/ε

(δAB)13 −→ ∆mBd
, ACP (B → J/ψKS),

(δAB)23 −→ ∆mBs
, b → sγ, ACP (B → φKS)

many future measurements 
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New particle searches 
in flavour physics

~hot topics~
Bs → µ+µ−

Ab
SL

SBs→J/ψφ(= sin 2βs)



SUSY particle contributions to 
Bs → µ+µ−
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Br(Bs → µ+µ−)SM

= (3.2± 0.2)× 10−9

extremely 
small!!

Br(Bs → µ+µ−)MSSM

= m2
bm2

µ tan6 β

M4
A0

  It could be large if 
tanβ is large
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SUSY particle contributions to 
Bs → µ+µ−

Excitement in the 
summer 2011!!! 

Early summer, CDF (7fb-1) announced...
Br(Bs → µ+µ−) = (1.8+1.1

−0.9)× 10−8
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New particle contributions to
Bs oscillation 



SJ/ψφ = Im
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= sin 2βs (βs canbelarge!!!)SUSU

New particle contributions to
Bs oscillation 
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b
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t

t̄ s̄

s

Gluino contribution to b → s transitions: LL mass insertion

! The large squark mass is compensated by the strong coupling.
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Box:

30% effect for

mq̃ <∼ 1 TeV
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Penguin:

30% effect for

mq̃ <∼ 500 GeV
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= sin 2βs (βs � 1◦)SM

βs≃1o in SMβs can be large in 
BSM
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✓Bs oscillation is 
much faster (we 
need more Lorentz 
boost=LHC/
Tevatron!)
✓Non-negligible 
width difference 
modify the master 
formula 

Difference between the 
Bd/Bs system

Bs oscillation measurement 
at LHC/Tevatron I: Bs➔J/ψΦ 



Constraints in                  plane 

Lenz, Nierste, arXiv:1102.4274 CKMfitter, indirect measure.

68% CL

68% CL

Plots all scaled
to have identical
axis unit sizes

Tevatron: with
less data, was
previously at
  2! deviation

from SM

Less significant 
deviation now, but all

still showing same trend...
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LHCb result 
with 300 pb-1 haven’t 

been published: 
STAY TUNED!!!

Bs oscillation measurement 
at LHC/Tevatron I: Bs➔J/ψΦ 



Bs oscillation measurement 
at LHC/Tevatron ΙI: 

dimuon charge asymmetry

Measure CP violation in mixing via

Direct semileptonic 
decay

Neutral B meson oscillation
and then semileptonic decay

DØ: Evidence for anomalous dimuon charge asymmetry, 
   3.2! deviation from 

(6 fb  ,PRL 105, 081801 (2010))
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One can compare to the Bs oscillation 
measurement from Bs➔J/ψΦ

LHCb result 
with 300 pb-1 haven’t 

been published: 
STAY TUNED!!!


