Franco-Asian Particle Physics School 9-21 October 2011, Les Houches

Tracking and Vertexing in High Energy Physics

Jérôme Baudot (baudot@in2p3.fr)

Lecture outline

- 1. Motivations & basic concepts
- 2. Detection technologies
- 3. Reconstruction algorithms
- 4. Deconstructing some tracking systems

1. Motivations & basic concep

- O Counting tracks
- Identifying through topology
- Figures of merit
- Environmental considerations

1. Motivations & Basic Concepts:

Tracking

- O Understanding an event
 - Materialize & individualize tracks
 - → LHC: ~1000 particles per 25 ns "event"
- Measuring the momentum
 - → Magnetic field used for curving trajectories $\frac{p(\text{GeV/c})}{z} = 0.3 \cdot B(\text{T}) \cdot R(\text{m})$
 - In B=4T a 1 GeV/c particle will get a sagitta of 1.5 mm
- Identifying the nature of a (single) track
 - → See Marco Zito's lecture

An Pb+Pb event from LHC as recorded by ALICE

1. Motivations & Basic Concepts:

Vertexing

- Identifying through topology
 - Short-lived weakly decaying particles
 - Charm c τ ~ 120 μm
 - Beauty c τ ~ 470 μm
 - Exclusive reconstruction
 - Decay topology with secondary vertex
 - Inclusive reconstruction
 - Flavor tagging partly based on impact parameter
 - $\sigma_{\rm IP}$ ~ 20-100 µm requested
- Finding the origin
 - → Where did the collision did occur?
 - Primary vertex (could be multiple)
 - → (life)Time dependent measurements
 - CP-asymmetries @ B factories ($\Delta z^{\sim} 60-120 \mu m$)

1. Motivations & Basic Concepts: Figures of Merit -1/2Tracking & Vertexing rely on multiple measurements/track 0 How to assess performance on a single measurement? Particle Intrinsic spatial resolution Signal generated 0 Sensitive segments Granularity or segmentation \rightarrow pitch $\sigma = \frac{\text{pitch}}{\sqrt{12}}$ Digital resolution • Improved res. through signal sharing pitch (assume signal amplitude measurement) $\sigma \propto -\frac{1}{si}$ signal/noise Signals generated Usefull tracking domain $\sigma < 1$ mm Sensitive segments Two-track resolution 0 Ability to distinguish to nearby trajectories Mostly governed by signal spread Efficiency 0 Driven by Signal/Noise Note: Noise = signal fluctuation readout (electronic) noise

1. Motivations & Basic Concepts:

Figures of Merit -2/2

- Tracking & Vertexing rely on multiple measurements/track
 - Crude estimation of impact parameter (IP) resolution (telescope equation)
 - $\sigma_{\rm ext/int}$ = spatial res.

$$\sigma_{IP} \propto \frac{\sqrt{R_{\text{ext}}^2 \sigma_{\text{int}}^2 - R_{\text{int}}^2 \sigma_{\text{ext}}^2}}{R_{\text{ext}} - R_{\text{int}}} \oplus \frac{R_{\text{int}} \sigma_{\theta(\text{ms})}}{p \sin^2(\theta)}$$

- → Second term prevents to benefit from $\sigma_{\text{ext/int}} \rightarrow 0$ (especially at low momentum)
- Material budget
 - → multiple scattering from Coulomb interaction with nuclei
 12.6 (MaV/a) / thiskness [
 - → Distribution of scatter angle: $\sigma_{\theta(ms)} = \frac{13.6 \text{ (MeV/c)}}{\beta p} \cdot z \cdot \sqrt{\frac{\text{thickness}}{X_0}} \cdot \left[1 + 0.038 \ln(\frac{\text{thickness}}{X_0})\right]$

1. Motivations & Basic Concepts: Environmental conditions – 1/2

- Life in a real collider experiment is tough (for detectors of course)
 - → Chasing small cross-sections → large luminosity and/or energy
 - Short interval between collisions
 - LHC: 25 ns
 - CLIC: 5 ns (but not continuous)
 - Large amount of particles = radiation
 - Vacuum could be required (space, very low momentum particles)
- Radiation tolerance
 - Two types of radiation
 - Ionizing (generate charges): dose in Gy = 100 Rad
 - Non-ionizing (generate defects): fluence in $n_{eq}(1MeV)/cm^2$
 - → The inner the detection layer, the harder the radiation (radius² effect)
 - → Examples for the most inner layers:
 - LHC: 10^{15} to $<10^{17} n_{eq}(1 \text{ MeV})/\text{cm}^2$ with 50 to 1 MGy
 - ILC: $<10^{12} n_{eq}(1 \text{ MeV})/\text{cm}^2$ with 5 kGy

1. Motivations & Basic Concepts:

Environmental conditions – 2/2

- Timing consideration
 - Readout speed limits dead time
 - Time resolution offers time-stamping of tracks
 - Tracks in one "acquisition event" could be associated to their proper collisions event if several have piled-up
- O Heat concerns
 - → Spatial resolution → segmentation
 Readout speed → power dissipation/channel

Hot cocktail!

 Efficient cooling techniques exist BUT add material budget and may not work everywhere (space)

Conclusion

- → Tracker technology driven by environmental conditions: hadron colliders (LHC)
- → Tracker technology driven by physics performances: lepton colliders (B factories, ILC)
- → Of course, some intermediate cases: superB factories, CLIC

2. Detection technologies

10

- Practical considerations
- Single layer systems
 - → Silicon, gas sensors
- O Multi-layer systems
 - Drift chamber and TPC
- O Tentative comparison
- 0 Leftovers

Practical considerations

- From a detection principle to a detector
 - → Build large size or many elements
 - Manufacture infrastructures
 - Characterization capabilities
 - Production monitoring
 - Integration in the experiment
 - Mechanical support
 - Electrical services (powering & data transmission)
 - Cooling (signal treatment dissipates power)
 - → Specific to trackers
 - Internal parts \rightarrow limited space
 - Material budget is ALWAYS a concern
 - \Rightarrow trade-offs required

Silicon sensors: strips

- Basic sensitive element
 - E-h pairs are generated by ionization in silicon
 - 3.6 eV needed
 - 300 µm thick Si generates ~22000 charges for MIP BUT beware of Landau fluctuation
 - Collection: P-N junction = diode
 - Depletion (10 to 0.5 kV) generates a drift field (10⁴ V/cm)
 - Collect time \sim 15 ps/µm
- O Silicon strip detectors
 - sensor"easily" manufactured
 with pitch down to ~25 μm
 - → 1D if single sided
 - → Pseudo-2D if double-sided
 - Stereo-angle useful against ambiguities
 - Difficult to go below 100 µm thickness

Silicon sensors: hybrid-pixels

- O Concept
 - $\rightarrow \quad \text{Strips} \rightarrow \text{pixels on sensor}$
 - One to one connection from electronic channels to pixels
- Performances
 - Real 2D detector
 & keep performances of strips
 - Can cope with LHC rate (speed & radiation)
 - Pitch size limited by physical connection and #transistors for treatment
 - minimal (today): 50x50 μm²
 typical: 100x150/400 μm²
 - spatial resolution about10 μm
 - → Material budget
 - Minimal(today): 100(sensor)+100(elec.) μm
 - Power budget: 10 μ W/pixel

CMOS Pixel Sensor

O Concept

- Use industrial CMOS process
 - Implement an array of sensing diode
 - Amplify the signal with transistors near the diode
- Gain in granularity: pitch down to $\sim 10 \,\mu m$
- → Gain in sensitive layer thickness \sim 10-20 µm
- → BEWARE: no depletion available
 - Slow (100 ns) thermal drift
- Performances
 - Spatial resolution 1-10 μm (in 2 dimensions)
 - → Material budget: ≤ 30 µm
 - Power budget: 1-5 μ W/pixel
 - → Integration time ~ 50-100 µs demonstrated
 - 1 µs in development

Wire chambers

• Basic sensitive element

- → Metallic wire, 1/r effect generated an avalanche
- Signal depends on gain (proportional mode) typically 10⁴
- → Signal is fast, a few ns
- Gas proportional counters
 - Multi-Wire Proportional Chamber
 - Array of wires
 - 1 or 2D positioning depending on readout
 - Wire spacing (pitch) limited to 1-2 mm
 - → Straw or drift tube
 - One wire in One tube
 - Extremely fast (compared to Drift Chamber)
 - Handle high rate
 - Spatial resolution <200 μm
 - Left/right ambiguity

Electric fields line around anode wires

0

Wire chambers "advanced"

Micro-pattern gas multipliers MSGC Replace wires with lithography micro-structures FAST TRIGGER Smaller anodes pitch 100-200 µm • BUT Ageing difficulties due to high voltage and manufacturing not so easy OORDINATE GEM X-COORDINATE Gain 10⁵ Multigern gain-rlischar 105 Hit rate 10⁶ Hz/cm2 harge probability on 5 MeV α particle 10⁻⁵ 10⁻⁶ **Fotal Gain** MICROMEGAS 10^{4} -> RIPLE GEN Even smaller distance anode-grid Hit rate 10⁹ Hz/cm2 10^{3} SINGLE GEM -a-aa--a--aa **D**- -More development -> 10^{2} -10⁻¹ 520 500 360 380 400 420480Electron emitting foil working in vacuum! $\Delta V(V)$ 16

Drift chambers

17

- Basic principle
 - Mix field and anode wires
 - Generate a drift
 - Pressurize gas to increase charge velocity (few atm)
 - → 3D detector
 - 2D from wire position
 - 1D from charge sharing at both ends
- O Spatial Resolution
 - → Related to drift path $\sigma \propto \sqrt{\text{drift length}}$
 - Typically 100-200 μm

Time Projection Chambers 1/2

- Benefits
 - → Large volume available
 - Multi-task: tracking + Part. Identification
- Basic operation principle
 - → Gas ionization \rightarrow charges
 - → Electric field → charge drift along straight
 - → End cap readout
 - wire proportional chamber type
 - Information collected
 - 2D position of charges at end-cap
 - 3rd dimension from drift time
 - Energy deposited from #charges
 - ➤ Different shapes:
 - rectangles (ICARUS)
 - Cylinders (colliders)
 - Volumes can be small or very large

Time Projection Chambers 2/2

- End cap readout
- Performances
 - ➤ Two-track resolution ~ 1cm
 - Transverse spatial resolution \sim 100 200 μ m
 - → Longitudinal spatial resolution ~0.2 1 mm
 - Longitudinal drift velocity: 5 to 7 cm/µs
 - ALICE TPC (5m long): 92 µs drift time
 - Limiting usage with respect to collision rate

Tentative comparison

Leftovers

- O Silicon drift detectors
 - Real 2D detectors made of strips
 - 1D is given by drift time
- O Diamond detectors
 - Could replace silicon for hybrid pixel detectors
 - Very interesting for radiation tolerance
- Plasma sensor panels
 - Derived from flat television screen
 - Still in development
- Charge Coupled Devices (CCD)
 - → Fragile/ radiation tolerance

- O DEPFET
 - → Depleted Field Effect Transistor detector
 - Real 2D and partly monolithic
- Nuclear emulsions
 - → One of the most precise $\sim 1 \mu m$
 - ➤ No timing information → very specific applications
- O Scintillators
 - → Extremely fast (100 ps)
 - Could be arranged like straw tubes
 - But quite thick ($X_0 \sim 2$ cm)

- Finders
- Fitters
- Adaptive methods
- O Alignment

Several tasks

- O Hypothesis
 - We have sensing layers which provides points
 - → We know where those points are located
 - The track model (helix/circle/line) is known
- A two functions process
 - Identify hits belonging to the same track (or tracks to the same vertex)
 = pattern recognition or FINDING
 - Adjust the track parameters from the point locations
 (or the vertex parameters from the tracks)
 = FITTING
 - Note: Tracking and Vertexing are conceptually identical

An event Au+Au @ 200 GeV by STAR

- Global methods
 - Use all points at a time
 - Transform the phase space
 - Circles lines
 - Lines points
 - Identify the best solutions in the new phase space
 - Well adapted to evenly distributed points with same accuracy
- O Local methods
 - Start with a seed = group of restricted #hits most probably belonging to the same track
 - Initiate the track parameter
 - project to next layer
 - → Find the "best" point
 - Use χ^2 approach to define "best" $\frac{(\text{pos}_{hit} \text{pos}_{track})^2}{\text{spatial res.}^2}$
 - Recompute track param & iterate to next layer

FINDING

FITTING

- Why do we need to fit?
 - Measurement error
 - Multiple scattering error
- Recursive method (linear χ^2 and Kalman filter)
 - → Start from an initial set of parameters:
 - Propagate to next layer:
 - New parameters
 - AND new covariance matrix (see F.Le Diberder's lecture)

- Material budget between layers
- → Use new point to update (FIT) parameters and covariance
- → Iterate...
- O Notes
 - The method is only matrix computation
 - Can be used for finding as well after propagation step (local finder)
 - Some points can be discarded if considered as outliers in the fit (use χ^2 value)

FITTING drives track extrapolation & momentum res.

Adaptive methods

- Shall we do better? 0
 - Higher track/vertex density, less efficient the classical method
 - Allows for many options and best choice
- Adaptive features 0
 - Dynamic change of track parameters during finding/ fitting
 - Measurements are weighted according to their uncertainty
 - Allows to take into account several "normally excluding" info
 - Many hypothesis are handled simultaneously
 - But their number decrease with iterations (annealing like behavior)
 - Non-linearity ->
 - Often CPU-time costly (is that still a problem?)
- Examples 0
 - Neural network, Elastic nets, Gaussian-sum filters, Deterministic annealing

Denby-Peterson net

Alignment strategy

- Let's come back to one hypothesis
 - → We know were the point are located
 - True to the extent we know were the detector is!
 - BUT, mechanical instability (magnetic field, temperature, air flow...) and also drift speed variation (temperature, pressure, field inhomogeneity...) limit our knowledge
 - Periodic determination of positions and deformations needed = alignment
- Methods
 - Track model depends on new "free" parameters, i.e. the alignment
 - ➤ Global alignment:
 - Fit the new params. to minimize the overall χ^2 of a set of tracks (Millepede algo.)
 - Beware: many parameters could be involved (few 10³ can easily be reached)
 - ➤ Iterative alignment:
 - Use tracks reconstructed with reference detectors and align other detectors by minimizing the "residual" (track-hit distance) width
 - Use a set of well know tracks and tracking-"friendly" environment to avoid bias

4. Deconstructing some tracking systems

CMS

FAPPS 2011 - Tracking & Vertexting in HEP

CMS

32

• Taking a picture of the material budget

Using secondary vertices from photon conversion nuclear interaction

Measuring it by data/simulation comparison

• Tracking efficiency

CMS

Impact parameter resolution

AMS

AMS

FAPPS 2011 - Tracking & Vertexting in HEP

Summary

- Fundamental characteristics of any tracking & vertexing device:
 - (efficiency), granularity, material budget, power dissipation, "timing", radiation tolerance
 - All those figures are intricated: each technology has its own limits
- Many technologies available
 - None is adapted to all projects (physics + environment choose, in principle)
 - Developments are ongoing for upgrades & future experiments
 - Goal is to extent limits of each techno. → convergence to a single one?
- Reconstruction algorithms
 - Enormous boost (variety and performances) in the last 10 years
 - Each tracking system has its optimal algorithm
- O Development trend
 - Always higher hit rates call for more data reduction
 - ➤ Tracking info in trigger → high quality online tracking/vertexing
- Link with:
 - → PID: obvious with TPC, TRD, topological reco.
 - → Calorimetry: Particle flow algorithm, granular calo. using position sensors

References

0

Was not discussed

- Particle interaction with matter
- The readout electronics
- O Cooling systems
- The magnets to produce the mandatory magnetic field for momentum measurement

FAPPS 2011 – Tracking & Vertexting in HEP

OPAL drift chamber

ICARUS - event

ALICE - TPC

ICARUS - TPC

ANTARES

FAPPS 2011 – Tracking & Vertexting in HEP