Beyond Standard Model (BSM)

Pyungwon Ko

pko@kias.re.kr

School of Physics, KIAS

Contents

- Lecture I: Effective Field Theory (EFT) Approach
 - Why BSM ?
 - Naive Dimensional Analysis
 - (SM as an) EFT
- Lecture II: BSM w/o Considering Hierarchy Problem
 - Additional Matters: 4th Generation, Additional Scalar (with DM)
 - New Gauge Interactions: Extra U(1), (LR model)
 - Extra Dim (UED)
- Lecture III: BSM Considering Hierarchy Problem
 - SUSY (GUT)
 - Technicolor
 - Large Extra Dim (ADD) and Warped spacetime (RS)

Great Success and Some Drawbacks of the SM

Contents

- What is the SM of particle physics?
 - Gauge group structure and particle contents
 - Flavor Physics and CP violation in the quark sector
 - Electroweak Precision Test (EWPT)
 - Where (What) is the Higgs after all?
- Phenomenological drawbacks of the SM
 - Neutrino masses and mixings
 - Dark Matter (DM)
- Other theoretical/aesthetical drawbacks
 - Gauge coupling unification and GUT
 - Why? and Fine Tuning problems
 - Quantum gravity
- Summary

What is the SM of particle physics?

Standard model (SM): Matter

Fundamental Constituent of Matter: Spin 1/2 Fermions

- Leptons do not feel strong interactions
- Quarks and gluons do! (Masses in GeV)

$$\begin{pmatrix} \boldsymbol{\nu_e} \ (\sim 0) \\ \boldsymbol{e} \ (0.511 \mathrm{MeV}) \end{pmatrix}_L, \quad \begin{pmatrix} \boldsymbol{\nu_\mu} \ (\sim 0) \\ \boldsymbol{\mu} \ (0.106) \end{pmatrix}_L, \quad \begin{pmatrix} \boldsymbol{\nu_\tau} \ (\sim 0) \\ \boldsymbol{\tau} \ (1.777) \end{pmatrix}_L, \\ \begin{pmatrix} \boldsymbol{u}^{\alpha} \ (\sim 0.003) \\ \boldsymbol{d}^{\alpha} \ (\sim 0.005) \end{pmatrix}_L, \quad \begin{pmatrix} \boldsymbol{c}^{\alpha} \ (\sim 1.50) \\ \boldsymbol{s}^{\alpha} \ (\sim 0.12) \end{pmatrix}_L, \quad \begin{pmatrix} \boldsymbol{t}^{\alpha} \ (\sim 175) \\ \boldsymbol{b}^{\alpha} \ (\sim 5) \end{pmatrix}_L$$

 $(e_R,\ \mu_R,\ au_R,\ u_R^lpha,\ c_R^lpha,\ t_R^lpha,\ d_R^lpha,\ s_R^lpha,\ b_R^lpha$ and $(N_{eR},\ N_{\mu R},\ N_{ au R}?)$ or Something else ?

SM: Forces (Interactions)

Interactions and Their Force Quanta

- Gravity (spin-2 massless graviton G)
 - → stars, galxies,...
- Electromagnetic Interactions (spin-1 photon γ)
 - → atoms and molecules
- Weak Interaction (spin-1 massive vector bosons W^{\pm}, Z^0)
 - \rightarrow Radioactivity (e.g., $n \rightarrow pe^-\bar{\nu}$)
- Strong Interaction (spin-1 massless gluons g)
 - → quarks and gluons, nucleons, nucleus
- Mathematically, all interactions except gravity are described by $SU(3)_C \times SU(2)_L \times U(1)_Y$ gauge theory
- And force that breaks EW symmetry (Higgs ?)

SM Lagrangian

- Standard Model (Glashow-Weinberg-Salam) based on $SU(3)_c \times SU(2)_L \times U(1)_Y$
- The Renormalizable SM lagrangian :

$$\mathcal{L}_{SM}^{Ren} = \mathcal{L}_{kin}(f, A) + \mathcal{L}_{kin}(A_{\mu}) + \mathcal{L}_{kin-pot}(H) + \mathcal{L}_{Yukawa}(f, \overline{f}, H)$$

where

$$\mathcal{L}_{kin}(f, A) = \bar{f}i\gamma \cdot Df$$

$$\mathcal{L}_{kin}(A_{\mu}) = -\frac{1}{4} F_{\mu\nu}^{a} F^{\mu\nu^{a}}$$

$$\mathcal{L}_{kin-pot}(H) = (DH)^{\dagger} (DH) - V(|\phi|)$$

$$\mathcal{L}_{Yukawa}(f, \bar{f}, H) = \bar{f}_{iR} H f_{iL} + \dots$$

Beyond Standard Model - p.8/138

SM Lagrangian-II

- The first two are very well verified upto $E \sim 200$ GeV (or down to $\sim 10^{-3}$ fm or 10^{-16} cm)
- The last two have to be studied more in the future, at Tevatron, LHC and ILC,
- ullet SM : An effective theory upto $E\sim {\sf a}$ few hundred GeV

$$\mathcal{L}_{\mathrm{SM}}^{\mathrm{Eff}} = \mathcal{L}_{\mathrm{SM}}^{\mathrm{Ren}} + \sum_{r=1}^{\infty} \frac{g_r}{\Lambda^r} \mathcal{O}_{(r+4)}$$

- Excellent agreement of the SM predictions with the almost all the data indicates that the new physics scale $\lambda > O(10-100)$ TeV, depending on the channels you study
- Baryon and Lepton numbers are accidental symmetries of the SM
 - ightarrow B and L violating scales are very high (see later) dard Model p.9/138

Feynman rules for gauge interactions

$$-ie\gamma_{\mu}Q_{f}$$

$$i\frac{g_2}{2\cos\theta_W}\gamma_\mu\left(v_f - a_f\gamma_5\right)$$

$$i\frac{g_2}{2\sqrt{2}}\gamma_\mu \left(1-\gamma_5\right)V_{td}$$

$$-ig_s\gamma_\mu(T^a)_{\alpha\beta}$$

Flavor physics and CP violation in the quark sector

Flavor and CP violation in SM

- Weak eigenstates are mixtures of mass eigenstates
- Cabibbo Kobayashi Maskawa (CKM) matrix describes flavor mixing and CP violation in the charged weak current interaction
- Unitarity : $VV^{\dagger} = 1$

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

CKMology

Wolfenstein parametrization:

$$V_{CKM} \simeq \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 - iA^2\lambda^4\eta & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- Current date : $\lambda = 0.22$, $A = (0.826 \pm 0.083)$
- **∍** Small mixing and Hierarchical structure $\lambda \sim 0.2, \lambda^2 \sim 0.04, \lambda^3 \sim 0.008$
- Why are quark masses and mixings so hierarchical?
- η : the unique source of CPV in K and B meson systems cf. Neutrino sector has completely different behavior!

Constraints in the $\rho-\eta$ plane

Appraise for (C)KM paradigm

- Many different independent (both tree and loop) processes single out a region for the apex of the UT, (ρ,η)
- This is highly nontrivial, because this would be not the case if the top was lighter of heavier than the current value
- Any new physics around EW scale may have additional Flavor and CP violation, which are now strongly constrained by the CKMology
- Even the $b \to s$ transition is now strongly constrained by the recent measurement of the mudulus of $B_s \overline{B_s}$ mixing, ΔM_s by D0 & CDF @ Tevatron

Electroweak Precision tests (EWPT)

- $(g-2)_{\mu}$: Muon anomalous magnetic dipole moment
 - Tests of (P)QCD
- Correlation between m_W , m_t and m_H
- Where (What) is the Higgs after all?

Where (What) is the Higgs after all?

Higgs mechanism in the SM

- Gauge Interaction has Universality, which is very well confirmed by many exp.'ts
- Still only known long range force is E & M and Gravity
- Other gauge bosons should get masses or confined
- Higgs boson has not been found yet: $m_H^{\rm exp} > 114~{\rm GeV}$
- Higgs Mechanism in EW vs. Confinement in QCD
- Recall the Landau—Ginzburg Theory for Superconductivity London Equation → Meissner Effect → Massive Photon inside SC

Beyond Standard Model - p.49/138

Bound on m_H within the SM

- Upper bound from tree level unitarity :
 - W_LW_L elastic scattering violates perturbative unitarity w/o Higgs boson (B.W.Lee, C. Quigg and H.B. Thacker)
 - Either Higgs boson or new resonances (as ρ, K^* ... in hadron physics) to restore unitarity
 - Another way out: Unitarity can be restored, if there are infinitely many massive gauge bosons, as predicted in higher dim. gauge theory without Higgs (Higgsless EWSB)
- Upper bound from triviality condition : $\lambda\phi^4$ theory is not asymptotically free
 - ightarrow No Landau pole appears until the scale Λ where new physics comes in

Bound on m_H within the SM-II

Lower bound from vacuum stability :

$$\frac{d\lambda}{dt} = \frac{3}{4\pi^2} \left[\lambda^2 + 3\lambda y_t^2 - 9y_t^4 + \text{small gauge and Yukawa terms} \right]$$

with
$$\lambda = \lambda_0 = m_H^2/2v^2$$
 and $y_t^0 = m_t/v$

• For small λ and fixed m_t , λ decreases with t and can be negative \rightarrow condition for $\lambda(\Lambda) > 0$:

$$m_H(\text{GeV}) > 129.5 + 2.1(m_t - 171.4) - 4.5 \left(\frac{\alpha_s(m_Z) - 0.118}{0.006}\right)$$

• $130 < m_H ({
m in~GeV}) < 200$ for $m_t = 171$ GeV, if $\Lambda \sim M_{\rm GUT}$ or $M_{\rm Pl}$

m_H vs. Λ : Classical

Higgs effects on EWPT included

m_H vs. Λ : plus fine tuning

Do we have to care about fine tuning?

SM Higgs: Summary

- Combining with the EWPT, the light fundamental Higgs is well supported with $m_H \lesssim 199$ GeV 95 % CL
- Such a light SM Higgs is well within the reach of LHC, and one can definitely find out Higgs boson, if the SM is the correct picture
- To test the Higgs mechanism by recontruting the Higgs potential, one needs to build the ILC or its relative, to accurately measure the tiple and the quartic couplings of Higgs boson
- ${\color{red} \bullet}$ Heavy Higgs or Higgsless models need conspiracy in order to be consistent with some parameters such as S or T

Beyond the SM Higgs?

- The previous plot is not valid, lighter Higgs possible (as in MSSM)
- More fundamental Higgs bosons $(SU(2)_L \text{ singlet, doublet, triplet,...})$
- No Higgs ? (Technicolor, Walking, and relatives)
- Composite Higgs ? (Little Higgs, Fat higgs, Top condensate, ...)
- What is realized in Nature?
 - → Very important and expensive question to be answered at LHC

Phenomenological drawbacks of the SM

- Neutrino masses and mixings
- Dark matter of our universe

Neutrino oscillations

- Neutrinos are hard to detect, and their masses are not precisely known
- Massless spin 1/2 particle in the renormalizable SM
- Mass limits from direct searches:
 - $m_{\nu} < 3$ eV from tritium β decay
 - $m_{\nu} < 0.19 \text{ keV from } \pi \rightarrow \mu \nu_{\mu}$
 - $m_{\nu} < 18.2$ MeV from $\tau \rightarrow 5\pi + \nu_{\tau}$
- Indirect bound from cosmology : $\sum m_{\nu} < 2(11) \ {\rm eV}$ from WMAP data analysis
- Why are they so small compared with other fermion masses?

$$m_e = 0.511 \; {\rm MeV}$$

Charged lepton flavor violation (LFV)?

- LFV in neutrino sector has been confirmed
- How about in the charged lepton sector ?
- Upper bounds on Br for some modes (2004 PDG) :

Mode	Br
$\mu \to e \gamma$	$< 1.2 \times 10^{-11}$
$\mu \to 3e$	$< 1.0 \times 10^{-12}$
$ au o e \gamma$	$< 2.7 \times 10^{-6}$
$ au o \mu \gamma$	$<1.1\times10^{-6}$
$ au o 3\mu$	$<1.9\times10^{-6}$
$ au o \mu \eta$	$< 9.6 \times 10^{-6}$

Charged LFV - II?

- Why is it so small in the charged lepton sector, whereas it is large in the neutrino sector? Answer: Not well understood yet
- Charged LFV can be enhanced in SUSY models or some physics beyond the SM
- Search for charged LFV's still going on : $\mu \to e \gamma$ (MEG) $\mu^- \operatorname{Ti} \to e^- \operatorname{Ti}$ (MECO) $\tau \to \mu \gamma$, 3μ , $\mu \eta$, etc. $(B, \tau \text{ factories})$
- Sensitive probe of physics beyond the SM

Some DM candidates

Particle	Solve another problem?
Singlet scalar	No (Simplest extension)
Singlet fermion	No (The next simplest extension)
Axion	Y (Strong CP)
LSP (χ_1^0 or $ ilde{G}$)	Y (fine tuning & proton stablity)
Lightest KK	Y(?) (Hierarchy problem)
Axino	Y (SUSY version of strong CP)
Branon	Y (?) (Baneworld scenario)

Some of them can be studied at colliders (LHC/ILC), whereas some of them are not

Other theoretical/aesthetical drawbacks

- Gauge coupling (force) unification?
- Some Why and fine tuning problems (# of generations, Why rich structures in masses and mixings, Why now ?...; strong CP, gauge hierarchy problem, cosmological constant problem, ...)
- Quantum gravity

Beyond Standard Model - p.66/138

Running of 3 gauge couplings

Unification of the Coupling Constants in the SM and the minimal MSSM

NB: GCU can be achieved in other ways without SUSY (RS1 with SM in the bulk, more matters in TeV regions,....)

Grand Unification (GUT)

- Unification \rightarrow Progress in theoretical physics Maxwell's E & M, QM and Special Relativity \rightarrow QFT,
- Unanswered Questions within SM
 - Why $Q_p = -Q_e$ and $U(1)_Y$ quantum numbers ?
 - Why 3 different forces ? Are they UNIFIABLE ? $SU(3)_c \times SU(2)_L \times U(1)_Y \to G_{\text{GUT}}$
 - Why proton is stable ? $\tau(p \to e^+\pi^0) > 1.6 \times 10^{33} \text{ years}$
 - Why 3 generations ?
 - Quantum Gravity ?
 - Many other questions ...

GUT and proton decay in SU(5)

$$5^* = (d_1^c, d_2^c, d_3^c, e^-, \nu_e)_L^T$$

$$10 = \begin{pmatrix} 0 & u_3^c & -u_2^c & -u^1 & -d^1 \\ 0 & u_1^c & -u^2 & -d^2 \\ 0 & -u^3 & -d^3 \\ 0 & -e^+ \\ 1 = N_L^c$$

• SM particles fit into $5^* + 10 + 1$ of SU(5)

Quark-Lepton Unification

SU(5) GUT: gauge bosons

24 Gauge bosons in adjoint

$$\begin{pmatrix} G_1^1 - \frac{2B}{\sqrt{30}} & G_2^1 & G_3^1 & \bar{X}^1 & \bar{Y}^1 \\ G_1^2 & G_2^2 - \frac{2B}{\sqrt{30}} & G_3^2 & \bar{X}^2 & \bar{Y}^2 \\ G_1^3 & G_2^3 & G_3^3 - \frac{2B}{\sqrt{30}} & \bar{X}^3 & \bar{Y}^3 \\ X_1 & X_2 & X_3 & \frac{W^3}{\sqrt{2}} + \frac{3B}{\sqrt{30}} & W^+ \\ Y_1 & Y_2 & Y_3 & W^- & -\frac{W^3}{\sqrt{2}} + \frac{3B}{\sqrt{30}} \end{pmatrix}$$

X, Y gauge bosons couple to quark + lepton (Leptoquarks) → Proton decays cf. Similar if R-parity is violated in the MSSM

SU(5) GUT and proton decay

Superheavy X, Y gauge boson excannge:

- NonSUSY SU(5) : $M_X \simeq 3 \times 10^{14}$ GeV $\to \tau \simeq 10^{30\pm1}$ years EXCLUDED
- SUSY SU(5) is OK with proton decay exp. and Gauge Coupling Unif.

Solving Gauge Hierarchy Problem

Fermion Loop Contribution

$$\Delta m_H^2 = \frac{|\lambda_f|^2}{16\pi^2} \left[-2\Lambda_{UV}^2 + 6m_f^2 \ln(\Lambda_{UV}/m_f) + \dots \right]$$

Scalar Loop Contribution

$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} \left[+\Lambda_{UV}^2 - 2m_S^2 \ln(\Lambda_{UV}/m_S) + ... \right]$$

Solving Gauge Hierarchy Problem-II

- $\Lambda_{UV} \sim M_{pl} \sim 10^{19} \; {\rm GeV} \; {\rm vs.} \; m_H \sim 10^2 \; {\rm GeV} \;$ $ightarrow \; {\rm Technical} \; {\rm Gauge} \; {\rm Hierarchy} \; {\rm Problem} \;$
- ullet Dangerous Λ^2_{UV} terms cancel, if $\lambda_S=|\lambda_f|^2$
- The result will be $\Delta m_H^2 = m_{soft}^2 \left[\frac{\lambda}{16\pi^2} \ln(\Lambda_{UV}/m_{soft}) + \right]$
- ullet m_{soft} cannot be too huge
- These two relations can be realized in susy
 * scalar quartic self couplings are related with Yukawa couplings
 - \ast f and S have the same masses in SUSY limit

Why SUSY?

- SUSY : FERMION → BOSON
- Maximal Symmetry of S-matrix in Rel. Local QFT with graded Lie algebra (Haag, Lopusansky and Sohnius)
- Can solve Technical Hierarchy Problem
- Better High Energy Behavior in SUSY QFT
- Low Energy Measurements of 3 Gauge Couplings + SUSY → SUSY GUT
- ullet Cold dark matter if R-parity is conserved (Bonus)
- Essential in String Theories (quantum theory of gravity)
- Local SUSY (SUGRA) includes Gravity

Effetive Field Theory (EFT)

- Why EFT ?
- SM (Ren + Nonren) as an EFT
- EFT for Dark Matter Physics

Why EFT? (weak coupling case)

- We don't know what happens at energy higher than it is affordable
- High Energy physics can leave footprints in low energy regime, which can be adequately described by effective lagrangian with an infinite tower of local operators
- If new physics scale is much higher than experimental energy scale, the lowest dim nonrenormalizable operators will give the dominant corrections to the SM prdictions

Fermi's theory of weak interaction is a good example

- One can do meaningful phenomenology with a few number of unknown parameters
- \blacksquare Existing proof : the very most successful SM down to $r \lesssim 10^{-18} \ \mathrm{m}$
- In any case, we are living with EFT any way in real life Beyond Standard Model - p.82/138

Why EFT? (strong coupling case)

- In a strongly coupled theory such as QCD where nonperturbative aspects are very important, it is ususally very difficult to solve a problem
- Very often physical dof is different from fields in the lagrangian (quarks and gluon vs. hadrons in QCD)
- Useful (often critical) to construct EFT based on the symmetries of the underlying strongly interacting theory, using the relevant dof only
- Most important to identify the relevant dof and relevant symmetries
- Many examples in QCD: chiral lagrangian [+ (axial) vector mesons, heavy hadrons], NRQCD for heavy quarkonium, HQET for heavy hadrons, SCET etc.

Naive Dimensional Analysis

Natural Units in HEP:

$$c = \hbar = 1 \to [\vec{L} = \vec{r} \times \vec{p}] = 0$$
$$[L] = [T] = [\vec{p}]^{-1}$$

$$E = \sqrt{(pc)^2 + (mc^2)^2} \longrightarrow E = \sqrt{p^2 + m^2},$$

QM Amp $\sim \int_{\text{path}} e^{iS/\hbar} \longrightarrow [Action] = 0 = [\int d^4x \mathcal{L}]$

- \bullet $[E] = [p] = [M] = [L]^{-1} = [T]^{-1}$
- Everything will be in mass dimensions:

$$[\mathcal{L}] = 4, \quad [\sigma(= \text{Area})] = -2, \quad [\tau(= \Gamma^{-1})] = -1$$

● Both the decay rate ($\Gamma \equiv \tau^{-1}$) and the cross section (σ) are given by

Fermi's Golden Rule

with suitable flux facors

$$|\mathcal{M}|^2 \times \text{phase space} \left(\equiv \prod_{i=1^n} \frac{d^3 \vec{p_i}}{(2\pi)^3 2E_i} \right) \times (2\pi)^4 \delta \left(\sum_i p_i - \sum_f p_f \right)$$

- Note that $[\Gamma] = +1$ and $[\sigma] = -2$
- It is often enough to do the dimensional analysis for Γ and σ , when there is only one important mass scale from the phase space integration
- A number of easy examples will be given in this lecture

Scalar fields

Lagrangian for a real scalar field:

$$\mathcal{L} = \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - \frac{m^2}{2}\phi^2 - \mu\phi^3 - \frac{\lambda}{4}\phi^4 + \sum_{i=1}^{\infty} \frac{C_{4+i}}{\Lambda^i}\phi^{4+i}$$

- $[m] = [\mu] = +1$ and $[\lambda] = [C_i] = 0$
- C_i terms are nonrenormalizable interaction terms ($\phi^{d>4}$: Irrelevant operators \to Will discuss shortly)
- Field op ϕ create or annihilate a particle of mass m:

$$\phi \sim a(p)e^{-ip\cdot x} + a^{\dagger}(p)e^{+ip\cdot x}$$

• Complex scalar $\phi \sim a + b^{\dagger}$ with a and b relevant to particle and antiparticle

Fermion fields

Lagrangian for fermion fields :

$$\mathcal{L} = \overline{\psi}(i\partial \cdot \gamma - m_{\psi})\psi + \frac{C}{\Lambda^2}(\overline{\psi}\psi)^2 + \dots$$

- $[\psi] = 3/2$, [m] = 1, [C] = 0
- C term: nonrenormalizable (irrelevant at low energy)
- Dirac field operator:

$$\frac{\psi}{\overline{\psi}} \sim bu + d^{\dagger}v$$

$$\overline{\psi} \sim b^{\dagger}\overline{u} + d\overline{v}$$

Fermi's theory of weak interaction is the classic example

ullet Dimensional analysis for $\psi\overline{\psi}$ scattering

$$\mathcal{M}(\psi(p_1,s_1)\overline{\psi}(p_2,s_2) \to \psi(p_3,s_3)\overline{\psi}(p_4,s_4)) \sim \frac{1}{\Lambda^2}$$

$$\sigma \sim \left(\frac{1}{\Lambda^2}\right)^2 \times (phasespace) \sim \left(\frac{1}{\Lambda^2}\right)^2 \times s$$

ullet Mandelstam variables for $2 \to 2$ scattering:

$$s \equiv (p_1 + p_2)^2, t = (p_3 - p_1)^2, u = (p_4 - p_1)^2$$

$$s + t + u = \sum_{i=1}^{4} m_i^2$$

• Cross section becomes zero as $s \to 0$: Irrelevant

Unitarity Violation

What happen at high energy ?

$$\sigma \to \infty \to$$

Violation of perturbative Unitarity near $\sqrt{s} \sim \Lambda/\sqrt{C}$ \rightarrow New dof's will come into play for cure (e.g., W^{\pm} or Z^0)

- This is the wonder of Nature with special relativity and quantum mechanics
- In the SM, the pointlike interaction is replaced by the W^{\pm}, Z^0 propagator, which cuts off the bad high energy behavior
- $\sigma \sim 1/s$ at very high energy scale $\sqrt{s} \gg m_{W,Z}$

Vector fields

Lagrangian for abelian gauge field with a charged particle (QED):

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \overline{\psi}(iD \cdot \gamma - m_{\psi})\psi$$

$$F_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

$$D_{\mu}\psi \equiv (\partial_{\mu} + ieA_{\mu})\psi$$

- Dimensionless coupling $e \to \text{Renormalizable}$ interaction (marginal operator, meaning that it is important at all energy scales)
- RG equation for e may run into a Landau pole, above which the coupling diverge → Either new theory before/around Landau pole, or low energy theory is free field theory

Renormalizable Opertors

- \bullet dim 0 : $I_{\rm op}$ (cosmological constant)
- dim 1 : S (scalar tadpole)
- dim 2 : S^2 , $A_{\mu}A^{\mu}$ (mass terms for bosons)
- ${\color{red} \bullet}$ dim 3 : $\overline{\psi}\psi$ (Fermion mass term) , S^3 (self interaction of singlet scalar)
- dim 4 : $S\overline{\psi}\psi$ (Yukawa interaction) , S^4 (Scalar self coupling) , A^4_μ , $\partial_\mu A_\nu A^\mu A^\nu$ (self interactions of gauge fields)

NB: S, S^3 etc possible only for gauge singlet S

Some remarks on QFT

- QFT is the basic framework for particle physics, and is a marriage of QM and Special Relativity
- Spin-Statistics theorem
 - Bosons: totally symmetric wavefunction
 - Fermions: totally antisymmetric wavefunction
 - Intrinsic P(B,F)=(+B,-F)
- ullet CPT theorem: $m_n=m_{ar n}$ and $au_n= au_{ar n}$, $\mu_n=\mu_{ar n}$
- However, a partial width of n and \bar{n} can be different \rightarrow Direct CP Violation :

$$\Gamma(n \to f) \neq \Gamma(\bar{n} \to \bar{f})$$

No renormalizable interactions possible for $s \ge 3/2$ (Higher spin would be OK for composite particles) (Higher spin would be OK for composite particles)

Heavy Quarknia Quantum Numbers

9 Bound State of spin-1/2 Q and \bar{Q} with $^{2S+1}L_J$:

$$P = (-1)^{L+1}, \quad C = (-1)^{L+S} \to 0^{-+}, 1^{--}, 1^{++}, 1^{+-},$$

Bound State of spin-0 Q and \bar{Q} with $^{2S+1}L_J$ (with S=0 and L=J):

$$P = (-1)^L$$
, $C = (-1)^L \to 0^{++}, 1^{--}, 2^{++}, \text{etc.}$

- No place for π (with 0^{-+})
- Observed J^{PC} clearly says that quarks are spin-1/2 fermions, not scalars
- Exotic mesons don't follow the above assigment

Effective Lagrangian Approach

- If new physics scale is high enough, it is legitimate to integrate out the heavy d.o.f.
- The low energy physics can be described in terms of effective lagrangian :

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{ren}} + \sum_{d=5}^{\infty} rac{\mathcal{O}^{(d)}}{\Lambda_d^{d-4}}$$

where all the operators in \mathcal{L}_{eff} are made of light d.o.f. with their local gauge symmetries

- Effects of the nonrenormalizable operators $\sim (E/\Lambda_d)^{d-4}$ relative to the amplitude from \mathcal{L}_{ren}
- **●** EFT is useful, as long as $E \ll \Lambda_d$, since we can keep only a few of the NR operators

SM as an EFT: Below e^+e^- Threshold

- ullet Only relevant quantum dof is photon A_{μ}
- If E increases, we need to include more and more NR operators
- Eventually, unitarity will be broken → We have to include new d.o.f.'s in the EFT, and redefine the EFT with more d.o.f.
- QED at $E \ll 2m_e$: A_{μ} , local U(1) and P, C

$$\mathcal{L}_{EET} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{e^4}{(4\pi)^2 \Lambda^4} F^4 + \dots$$

where $\Lambda \sim m_e$

• This effective lagrangian describes $\gamma\gamma$ scattering, the cross section of which will break unitarity when E reaches $2m_e$

SM as an EFT: Below e^+e^- Threshold

• The cross section grows like $\sim s^3$:

$$\sigma(\gamma\gamma \to \gamma\gamma) \sim \frac{e^8}{\Lambda^8} s^3$$

and see at which energy scale unitarity is violated

- Unitarity will be restored due to a new process that opens up: $\gamma\gamma \to e^+e^-$
- One has to redefine the effective lagrangian near e^+e^- threshold, by including the electron/positron fields explicitly

Beyond Standard Model - p.97/138

Digress on Unitarity

- Unitarity is the most profound thing in QM
- Scattering Operator S is unitary:

$$\langle f|S|i\rangle = S_{fi} = \delta_{fi} + i(2\pi)^4 \delta^4(p_i - p_f)T_{fi}$$

• Unitarity: $S^{\dagger}S = SS^{\dagger} = 1$

$$T_{fi} - T_{fi}^* = i(2\pi)^2 \sum_n \delta^4(p_f - f_n) T_{fn} T_{in}^*$$

- If interaction is weak, we can ignore the RH \rightarrow T becomes Hermitian $T_{fi} = T_{if}^*$
- Optical theorem for f = i:

$$2\text{Im}T_{ii} = (2\pi)^4 \sum_{n} |T_{in}|^2 \delta^4 (P_i - P_n)$$

Rayleigh Scattering: Why is Sky Blue?

Photon scattering with neutral atom A where

$$E_{\gamma} \ll \Delta E_{n1} \equiv E_n - E_1$$

- → Elastic scattering of light on neutral atoms
- Atom is described by nonrelativistic Schrödinger wave function ψ_A with dim 3/2:

$$\mathcal{L} = \psi_A^{\dagger} \left(i \frac{\partial}{\partial t} - H \right) \psi_A + \frac{e^2}{\Lambda^3} \psi_A^{\dagger} \psi_A F_{\mu\nu} F^{\mu\nu} + \dots$$

- \bullet $\Lambda \sim \Delta E_{21}, r_0$??
- Note that photon couples to a neutral atom. How ???

- No coupling of photon to neutral objects only at renormalizable level
- Photon couples to neutral particle at nonrenormalizable level due to quantum fluctuation can involve charged particles in the loop
- Likewise, gluons can couple to photons
- γA scattering cross section :

$$\sigma(\gamma A \to \gamma A) \sim \frac{e^4}{\Lambda^6} E_{\gamma}^4$$

for
$$E_{\gamma} \ll \Delta E_{2,1}$$

■ Blue light scatters more than red light → Sky is blue, and we can enjoy the beautiful sunrise/sunset in red

Van der Waals Force

- Potential between neutral atoms are described by two-photon exchange diagrams from the previous lagrangian $\psi_A^\dagger \psi_A F^2$
- Additional contact interaction has to be considered:

$$\frac{1}{\Lambda^2} \left(\psi_A^{\dagger} \psi_A \right)^2$$

- Calculate the two contributions and discuss what is the form of the force between two neutral atoms (Van der Waals interaction)?
- What is a in the exponent in $V(r) \sim r^a$?
- What if we consider the neutral atom relativistically?

QED as an EFT below $\mu^+\mu^-$ threshold

• QED at $2m_e \le E \ll 2m_\mu$: $A_m u$, e, \bar{e} , local U(1) and P,C^{--}

$$\mathcal{L}_{\text{Eff}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \overline{e}(iD - m_e) e$$

$$+ \frac{e^4}{(4\pi)^2 \Lambda_1^4} F^4 + \frac{e}{(4\pi)^2 \Lambda_2} \overline{e} \sigma^{\mu\nu} e F_{\mu\nu}$$

where $\Lambda_1 \sim m_\mu$, and $\Lambda_{2,3} \sim O(1)$ TeV or larger (see later discussions on these points)

- NP scale in each NR operator is independent (different from each other) in general, since the origin can be different
- Scale for F^4 is now $\sim m_\mu$, unlike the previous case

Beyond Standard Model - p.103/138

QED as an EFT below $\mu^+\mu^-$ threshold

- Additional $1/(4\pi)^2$ suppression for NR operators generated at one-loop level, compared with NR operators generated at tree level, even if their operator dim's are the same
- If we impose $SU(2)_L \times U(1)_Y$ instead of $U(1)_{\rm em}$, the Λ_2 term should be replaced by

$$\frac{e}{(4\pi)^2 \Lambda_2^2} \overline{e_L} \sigma^{\mu\nu} H e_R F_{\mu\nu} \to \frac{ev}{\sqrt{2}(4\pi)^2 \Lambda_2^2} \overline{e_L} \sigma^{\mu\nu} e_R F_{\mu\nu}$$

and the effect becomes smaller for the same Λ_2 , or the bound on Λ_2 becomes stronger

QED as an EFT above $\mu^+\mu^-$ threshold

• QED at $E \ll 2m_{\pi}$: A_{μ} , e, \bar{e} , μ , $\bar{\mu}$, local U(1) and P,C

$$\mathcal{L}_{\text{Eff}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \overline{e}(iD - m_e) e + \overline{\mu}(iD - m_{\mu}) \mu$$

$$+ \frac{e^4}{(4\pi)^2 \Lambda_1^4} F^4 + \frac{e}{(4\pi)^2 \Lambda_2} \overline{e} \sigma^{\mu\nu} e F_{\mu\nu} + \frac{e}{(4\pi)^2 \Lambda_3} \overline{\mu} \sigma^{\mu\nu} \mu F_{\mu\nu}$$

$$+ \frac{e}{(4\pi)^2 \Lambda_4} \overline{e} \sigma^{\mu\nu} \mu F_{\mu\nu} + \frac{e^2}{\Lambda_5^2} (\overline{e} e) (\overline{e} \mu) + H.c.$$

where $\Lambda_1 \sim m_\pi$, $\Lambda_{2,3} \gtrsim XX$ TeV , and $\Lambda_{4,5} \gtrsim$ TeV or larger (see later discussions on these points)