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텍스트텍스트

Speculative extentions like SUSY also have a potentially large contribution given
by [1]

aµ(SUSY) = sgn(µ) × 13 × 10−10
[
100GeV

mSUSY

]2

tan β (2)

with sgn(µ) the sign of the SUSY (µ) parameter and tanβ the ratio of the vacuum
expectation values of the two Higgs doublets.

Muon g-2: Experimental Method

There are three major components of the muon g-2 experimental method [2]:

• Polarize: Using the parity violating decay π− → µ− + ν̄µ

• Interact: Precess in a uniform magnetic field

• Analyze: Using the parity violating decay µ− → e− + ν̄e + νµ

Pions are produced by colliding energetic protons onto a fixed target. Pions of
a certain momentum range are collected and directed into a pion decay channel.
The muons resulting from the pion decay can be highly polarized (of the order of
95%) when a small muon momentum bite of 1% is used. These longitudinally
polarized muons are directed into a large super-conducting magnet of 7.11m radius.
The magnetic field is vertical and has a strength of 1.5T. The radius and strength
of this magnet are very specific and driven by the requirement to use muons of a
specific momentum 3.1GeV/c, a.k.a. magic momentum, with γ ≈ 29.3 [3].

For the non-relativistic case the g-2 principle is just the difference between the
momentum precession and the spin precession of the muon. The cyclotron (angular)
frequency is

ωc =
eB

m
(3)

while the spin precession is

ωs =
g

2

eB

m
(4)

and their difference

ωa = ωs − ωc = (
g

2
− 1)

eB

m
=

g − 2

2

eB

m
⇒ ωa = a

eB

m
(5)

It turns out that this equation is also valid in the relativistic case when taking into
account Thomas’ precession of the accelerated system. For a positive a, like it is the
case with the muon, it means that the spin vector gets ahead of the momentum vector
in every turn. In order to be able to determine the anomalous magnetic moment a
with high accuracy we need to determine with at least the same accuracy ωa, e/m
and B. The last requirement places severe restrictions on the possible magnetic field
configurations, with the simplest being that of a high uniformity. A highly uniform
magnetic field is not very efficient in storing a large number of muons because of the
absence of vertical focusing. This vertical focusing is provided for by an electrical
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The two uncertainties given are the statistical and the systematic ones. The total error in square brackets
follows by adding in quadrature the statistical and systematic errors. In Table 1 all results from CERN
and E821 are collected. The new average is completely dominated by the BNL results. The individual
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Fig. 7. Results for the individual E821 measurements, together with the new world average and the theoretical prediction. The
CERN result is shown together with the theoretical prediction by Kinoshita et al. 1985, at about the time when the E821
project was proposed.The dotted vertical bars indicate the theory values quoted by the experiments.

measurements are shown also in Fig. 7. The comparison with the theoretical result including predictions
from SM extensions will be discussed later in Sect. 7. In the following sections we first review the SM
prediction of aµ.

3. QED Prediction of g − 2

Any precise theoretical prediction requires a precise knowledge of the fundamental parameters. In QED
these are the fine structure constant α and the lepton masses. As the leading order result is α

2π and since
we want to determine a# with very high precision, the most important basic parameter for calculating aµ is
the fine structure constant. Its most precise value is determined using of the electron anomalous magnetic
moment

aexp
e = 0.001 159 652 180 73(28)[0.24 ppb] , (42)

which very recently [105,106] has been obtained with extreme precision. Confronting the experimental value
with the theoretical prediction as a series in α (see Sect. 3.2 below) determines [107,108,106]

α−1(ae) = 137.035999084(51)[0.37 ppb] . (43)

This new value has an uncertainty 20 times smaller than any preceding independent determination of α and
we will use it throughout in the calculation of aµ.

Starting at 2–loops, higher order corrections include contributions from lepton loops in which different
leptons can circulate and results depend on the corresponding mass ratios. Whenever needed, we will use
the following values for the muon–electron and muon–tau mass ratios, and lepton masses [37,38,103,104]

mµ/me = 206.768 2838 (54) , mµ/mτ = 0.059 4592 (97) ,

me = 0.510 9989 918(44)MeV , mµ = 105.658 3692 (94)MeV , mτ = 1776.99 (29)MeV .
(44)
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and later we will denote by

CL =
3

∑

k=1

A(2L)
k , (46)

the total L–loop coefficient of the (α/π)L term. The present precision of the experimental result [16,92]

δaexp
µ = 63 × 10−11 , (47)

as well as the future prospects of possible improvements [111], which are expected to be able to reach

δafin
µ ∼ 10 × 10−11 , (48)

determine the precision at which we need the theoretical prediction. For the n–loop coefficients multiplying
(α/π)n the error Eq. (48) translates into the required accuracies: δC1 ∼ 4 × 10−8, δC2 ∼ 1 × 10−5, δC3 ∼
7×10−3, δC4 ∼ 3 and δC5 ∼ 1×103 . To match the current accuracy one has to multiply all estimates with
a factor 6, which is the experimental error in units of 10−10.

3.1. Universal Contributions

• According to Eq. (70) the leading order contribution Fig. 8 may be written in the form (see below)

a(2) QED
! =

α

π

1∫

0

dx (1 − x) =
α

π

1

2
, (49)

which is trivial to evaluate. This is the famous result of Schwinger from 1948 [52].

γ

γ

%%

Fig. 8. The universal lowest order QED contribution to a!.

• At two loops in QED there are the 9 diagrams shown in Fig. 9 which contribute to aµ. The first 6 diagrams,
which have attached two virtual photons to the external muon string of lines contribute to the universal
term. They form a gauge invariant subset of diagrams and yield the result

A(4)
1 [1−6] = −279

144
+

5π2

12
− π2

2
ln 2 +

3

4
ζ(3) .

The last 3 diagrams include photon vacuum polarization (vap / VP) due to the lepton loops. The one with
the muon loop is also universal in the sense that it contributes to the mass independent correction

A(4)
1 vap(mµ/m! = 1) =

119

36
− π2

3
.

The complete “universal” part yields the coefficient A(4)
1 calculated first by Petermann [112] and by Som-

merfield [113] in 1957:

A(4)
1 uni =

197

144
+

π2

12
− π2

2
ln 2 +

3

4
ζ(3) = −0.328 478 965 579 193 78... (50)

where ζ(n) is the Riemann ζ–function of argument n (see also [114]).
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Fig. 9. Diagrams 1-7 represent the universal second order contribution to aµ, diagram 8 yields the “light”, diagram 9 the
“heavy” mass dependent corrections.

• At three loops in QED there are the 72 diagrams shown in Fig. 10 contributing to g − 2 of the muon. In
closed fermion loops any of the SM fermions may circulate. The gauge invariant subset of 72 diagrams where

all closed fermion loops are muon–loops yield the universal one–flavor QED contribution A(6)
1 uni. This set

has been calculated analytically mainly by Remiddi and his collaborators [115], and Laporta and Remiddi
obtained the final result in 1996 after finding a trick to calculate the non–planar “triple cross” topology
diagram 25) of Fig. 10 [116] (see also [117]). The result turned out to be surprisingly compact and reads

A(6)
1 uni =

28259

5184
+

17101

810
π2 − 298

9
π2 ln 2 +

139

18
ζ(3) +

100

3

{

Li4(
1

2
) +

1

24
ln4 2 − 1

24
π2 ln2 2

}

− 239

2160
π4 +

83

72
π2ζ(3) − 215

24
ζ(5) = 1.181 241 456 587 . . . (51)

This famous analytical result largely confirmed an earlier numerical calculation by Kinoshita [117]. The
constants needed for the evaluation of Eq. (51) are given in Eqs. (A.13) and (A.14).

The big advantage of the analytic result is that it allows a numerical evaluation at any desired precision.
The direct numerical evaluation of the multidimensional Feynman integrals by Monte Carlo methods is
always of limited precision and an improvement is always very expensive in computing power.
• At four loops there are 891 diagrams [373 have closed lepton loops (see Fig. 11), 518 without fermion
loops=gauge invariant set Group V (see Fig. 12)] with common fermion lines. Their contribution has been
calculated by numerical methods by Kinoshita and collaborators. The calculation of the 4–loop contribution
to aµ is a formidable task. Since the individual diagrams are much more complicated than the 3–loop ones,
only a few have been calculated analytically so far [118]–[120]. In most cases one has to resort to numerical
calculations. This approach has been developed and perfected over the past 25 years by Kinoshita and his
collaborators [121]–[125] with the very recent recalculations and improvements [108,126,39]. As a result of
the enduring heroic effort an improved answer has been obtained recently by Aoyama, Hayakawa, Kinoshita
and Nio [108] who find

A(8)
1 = −1.9144(35) (52)

where the error is due to the Monte Carlo integration. This very recent result is correcting the one published

before in [127] and shifting the coefficient of the
(

α
π

)4
term by – 0.19 (10%). Some error in the cancellation

of IR singular terms was found in calculating diagrams M18 (−0.2207(210)) and M16 (+0.0274(235)) in the

22
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Fig. 10. The universal third order contribution to aµ. All fermion loops here are muon–loops. Graphs 1) to 6) are the light–by—
light scattering diagrams. Graphs 7) to 22) include photon vacuum polarization insertions. All non–universal contributions follow
by replacing at least one muon in a closed loop by some other fermion.

set of diagrams Fig. 12. The latter 518 diagrams without fermion loops also are responsible for the largest
part of the uncertainty in Eq. (52). Note that the universal O(α4) contribution is sizable, about 6 standard
deviations at current experimental accuracy, and a precise knowledge of this term is absolutely crucial for
the comparison between theory and experiment.
• The universal 5–loop QED contribution is still largely unknown. Using the recipe proposed in Ref. [37],
one obtains the following bound

A(10)
1 = 0.0(4.6) , (53)

for the universal part as an estimate for the missing higher order terms.
As a result the universal QED contribution may be written as

auni
! = 0.5

(α

π

)

− 0.328 478 965 579 193 78 . . .
(α

π

)2

+1.181 241 456 587 . . .
(α

π

)3
− 1.9144(35)

(α

π

)4
+ 0.0(4.6)

(α

π

)5

23

2011년	 10월	 13일	 목요일



(1) (2x3=6) (15+3=18) (15) ((3+1)x2x7=56) (7)

(3x50=150) (3x6) (8x6) (10x6) (6) (2x6)

Fig. 11. Some typical eight order contributions to a! involving lepton loops. In brackets the number of diagrams of a given type
if only muon loops are considered. The latter contribute to the universal part.

M01 M02 M03 M04 M05 M06 M07

M08 M09 M10 M11 M12 M13 M14

M15 M16 M17 M18 M19 M20 M21

M22 M23 M24 M25 M26 M27 M28

M29 M30 M31 M32 M33 M34 M35

M36 M37 M38 M39 M40 M41 M42

M43 M44 M45 M46 M47

Fig. 12. 4-loop Group V diagrams. 47 self-energy-like diagrams of M01 – M47 represent 518 vertex diagrams [by inserting the
external photon vertex on the virtual muon lines in all possible ways]. Reprinted with permission from [108]. Copyright (2007)
by the American Physical Society].

(18) (18) (2072) (120) (18) (2)

Fig. 13. Typical tenth order contributions to a! including fermion loops. In brackets the number of diagrams of the given type.

= 0.001 159 652 176 30(43)(10)(31)[54] · · · (54)

The three errors given are: the error from the uncertainty in α, given in Eq. (43), the numerical uncertainty
of the α4 coefficient and the error estimated for the missing higher order terms.

As we already know, the anomalous magnetic moment of a lepton is an effect of about 0.12%, g!/2 !
1.00116 · · ·. It is remarkable that in spite of the fact that this observable is so small we know ae and aµ more

precisely than most other precision observables. Note that the first term a(2)
! ! 0.00116141 · · · contributes

the first three significant digits of the full result.
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Standard Model Prediction for Muon g − 2

QED contribution 11 658 471.809 (0.016) ×10−10 Kinoshita & Nio

EW contrib. 15.4 (0.2) ×10−10 Czarnecki et al

Hadronic contrib.

LO hadronic 689.4 (4.0) ×10−10 HLMNT09

NLO hadronic −9.8 (0.1) ×10−10 HLMNT09

light-by-light 10.5 (2.6) ×10−10 Prades, de Rafael & Vainshtein

Theory TOTAL 11 659 177.3 (4.8) ×10−10

Experiment 11 659 208.9 (6.3) ×10−10 world avg

Exp − Theory 31.6 (7.9) ×10−10 4.0 σ discrepancy

(Numbers taken from HLMNT09 (arXiv:1001.5401))
n.b.: hadronic contributions:

. .

. .
had.

LO

µ

had.

NLO

µ

!
had.

l-by-l

µ
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LO Hadronic Contribution

The diagram to be evaluated:

.

.

.

.

had.
µ

pQCD not useful. Use the dispersion
relation and the optical theorem.

.

.

.

.

had.
=

∫
ds

π(s−q2)
Im

had.

2 Im
had.

=
∑

dΦ

∫ 2

had.

ahad,LO
µ =

m2
µ

12π3

∫ ∞

sth

ds
1
s
K̂(s)σhad(s)
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• Weight function K̂(s)/s = O(1)/s =⇒
Lower energies more important
• We have to rely on exp. data for σhad(s)
=⇒ Good data crucial
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T.Teubner, talk at Phipsi09, Oct, 2009
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SUSY Contributions?

Is the 4.0σ deviation due to SUSY?

Dominant SUSY contributions:

.

.

µ
˜χ
±

˜ν
.

.

µ
˜µ

˜χ
0

which is, very roughly, given by

aSUSY
µ = (sgn µ)

α(MZ)
8π sin2 θW

m2
µ

m̃2
tanβ,

where m̃ is the SUSY scale.

Numerically,

aSUSY
µ =(sgnµ) × 13 × 10−10

×
(

100GeV
m̃

)2

tanβ

In order for this to be 15.8 ≤ aSUSY
µ ×

1010 ≤ 47.4 (2 σ range),

m̃ = 170 − 640 GeV

for tanβ = 10 − 50. (Rough estimates)
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Summary

muon g-2 : Competition between Th and Exp, 
one of the best precision test of the SM

Stringent tests for Lorentz tranformation 
(time dilation)
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