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Plan for 3 days lectures
Day-1:  Basis of QCD
Day-2:  Proton structure @ lepton-hadron collision
Day-3:  Jets @ hadron-hadron collision

QCD knowledge necessary for 
doing physics at LHC► Leant from Day-1: hadrons are 

composite of quarks and gluons
which are “confined” into.

If we do not know about the
inside of proton exactly,
LHC (proton-proton collisions)
will become like:

i.e. don’t know
what’s happening ☺

Day-2 is to 
know about 
inside proton
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Introduction

How to look inside the matter ?
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How to “look” into the structure of matter

Optical microscope
↓
Electron microscope
↓
X-ray sources
↓
α, β-rays from
isotopes
Ex.  Discovery of 
nuclei by Rutherford

Spatial resolution
～（Wavelength）-1 h/q
⇒ By scattering with
high energy particle

qi

qf

q=|qf-qi|
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Discovery of quark

5Will be introduced later in detail. 
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Quark-Parton model

How to describe “structure” inside proton ?
How proton is composed of quarks/gluons ?



7

How to “describe” the structure of matter
► First, let’s consider two spin-1/2 point-like particles scattering: “no structure”
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-- Kinematics: 1 degree-of-freedom (elastic scattering), e.g. scattering angle
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-- EM e-μ scattering : Helicity conservation
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How to “describe” the structure of matter -cont’d-

► With large momentum transfer Q2, proton cannot be stay intact; breaks up
into many hadrons: “Deep Inelastic Scattering (DIS)”
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-- Kinematics: 2 degree of freedoms,  scattering angle and hadronic mass

Propagator
term

In terms of
x and y

(by two
quantities)

222 )11( Q
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Qx
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mp

Structure functions (F2)
to parameterize proton 
structure; how different from 
point-like case.

Intuitively, cross section
can be expected to be: 

For the case of EM e-p scattering,
i.e. trying to look inside proton
with EM probe. 



Quark-Parton model
Proton is consisted of  “partons” one of which goes into a (hard-)scattering
The other partons are just “spectators” :  similar to the impulse approximation

Linear superposition of (hard-)scattering of each parton

► If parton is massless spin-1/2 particle:

mp
mp

① Massless x is the momentum fraction (wrt. proton) of the parton
“Bjorken x” 

x
pq

Q
qp
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η

η
If we call
momentum
fraction
as η

Massless
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Quark-Parton model -cont’d-
► If parton (inside spin-1/2 proton) is massless spin-1/2 particle:

mp
mp

② Spin 1/2 Structure function F2 is (charge-squared weighted) sum of
spin ½ parton’s existing probability
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q(x): (Existing) Probability density function of parton q with
momentum fraction x  

“Parton distribution function (PDF)”
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Quark-Parton model -cont’d-
► If proton structure (parton composition) is static:

-- If point-like parton is simply just there,
-- and their existence probability is

just a  matter

③ Cross section and F2 will be a function of only x “Scaling”

∑=
i

ii xxqexF )()( 2
2

2 degree-of-freedom kinematics 1 degree-of-freedom
i.e. Not depending on Q2 11

uR ↑

uG ↑ uB ↑
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Q2 is the spatial 
resolution to “look” 
structure.

Structure stays 
same although we 
increase resolution

Here I changed
dx dQ2 from 
previous page



Bjorken Scaling
► Structure function F2 measured at Q2 range: 1 < Q2 < 8 GeV2

12

Bjorken scaling shown up to
Q2 ~ 10 GeV2

Validity of Quark-Parton 
model 

“Discovery of quarks”
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Scaling violation

Quark-parton model describes proton structure by means of:
-- PDFs; existence probability of each parton

Quark-parton model gives a “static” view of proton
-- No dependence on spatial resolution Q2

Dynamical view of proton 
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Dynamical picture of QCD
► Increased spatial resolution Q2 Shorter interaction time τint

-- Gluon splits into a pair of quark and anti-quark, which in turn recombines
back to gluon later. Such is repeated every short time scale.

With high Q2, hard scattering can occur with such instantly-lived quark
Taking a “snap-shot” of dynamic picture of proton

-- With EM interaction (γ-probe), gluon cannot be seen directly (cannot
directly interact with γ）, but is indirectly seen as “increase of quarks
with smaller x as Q2 gets higher” : “Scaling violation”

2
int /1 Q≈τ



How the looking is changed
as the scale goes

► How quark and gluon PDFs evolve as the scale Q2 goes 
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Q 2

Q2+δQ2
quark

gluon



How the looking is changed
as the scale goes

► How quark and gluon PDFs evolve as the scale Q2 goes 
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Q 2

Q2+δQ2
quark

gluon

Sum up all
quark flavours
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Integrate all momentum
higher than x

ξ

ξ
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Called: Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi
(DGLAP) evolution 
equation
( Visit this later again.)

Slowly (log) changes wrt Q2

Measurement in wide Q2

coverage necessary



Deep inelastic scattering (DIS) experiments
► : center-of-mass energy squared
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protonMAX
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r

GeVsQ

1000/1~

10~ 252

λ

=

sQ MAX =2

► Fixed target vs collider kinematics HERA: world’s only e-p collider
(Ee=27.5 GeV, Ep=920 GeV)

-- Operated until year 2007 
GeV 320=s

(corresponds to ~50 TeV
incident beam on fixed target)Bjorken x

Q2

(scale)
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Structure function measurements
HERA F2
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Factorization and 
revisit of DGLAP evolution

QCD predicts a dynamical picture of proton, namely
its structure’s evolution wrt. log of Q2 (spatial resolution)

Where this “lnQ2” comes from ? 
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DIS at Leading Order QCD
► Let’s consider leading order QCD effect to DIS



Reminder:
Collinear/Soft singularities

These singularities arise from interactions at long distance, and called as 
infrared divergence

21

Slides @
Day-1

3 
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DIS at Leading Order QCD
► Let’s consider leading order QCD effect to DIS
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DIS at Leading Order QCD
► Let’s consider leading order QCD effect to DIS

What is the origin of collinear 
divergence
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If we introduce
k2 cutoff

lnQ2 dependence
originates from here
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Factorization
► Let’s consider leading order QCD effect to DIS
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Factorization -cont’d-
►Arbitrary choice on “C” Factorization scheme

-- MS,  DIS schemes, etc.

► PDF absorbs collinear divergence
-- Cannot be fully calculated
-- However, its variation with μF is given by
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What’s happened by factorization 
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μF
2

Hard process:  scale > μF
2

-- Infrared-safe, perturbative
calculation possible

Soft process:  scale < μF
2

-- Non-perturbative effects
absorbed in PDF

μ0
2

)(ˆ ieqσ

)(xqi

)}()(ˆ{
1

0
xqeqdx iii ×= ∫ σσ

-- If PDF is given at a certain scale (μ0
2)

PDF at μF
2 can be extrapolated by

DGLAP evolution equation
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Determination of PDF

Factorization technique allows us to split out un-calculable 
collinear divergences due to long-range.

-- PDFs to absorb it. 
Nevertheless, QCD can predict how PDFs should evolve once 
they are given at a certain starting scale.

How to determine such “PDFs at a certain starting scale” ?
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Determination of PDF

► Determine PDFs by fitting measurements

μ0
2

μF
2

Parameterize PDFs by using
some functional form e.g.

and assume some initial values for the parameters

)1()1()( 430
2

0
21 xAxAxxAq AA

i ++−=μ

);( 2
iFi Aq μ

);( 2
0 ii Aq μ

DGLAP

);,( 2
2 i

theory AQxF
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Governs high-x
behavior

Governs low-x
behavior

“Smoothing function”
to connect low-high x smoothly
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Determination of PDF

► Determine PDFs by fitting measurements

μ0
2

μF
2

Parameterize PDFs by using
some functional form e.g.

update parameters, and repeat
With these iterations, find out the best parameters
which describe the data best
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PDF parameterization [An example]
► Flavor decomposition with uV, dV, g, qsea, 

uuuV −≡
dddV −≡

seauu = seadd = ss =

sdusduq seaseasea +++++=

► Constraints
-- Number sum rule ∫ =

1

0

1dxdV∫ =
1

0

2dxuV

-- Momentum sum rule ∫ =+++
1

0

1)( seaVV xqxgxdxu

ud −

► Assumptions

-- )(
4
1 dus +=

-- νN(CCFR etc) di-muon data

In total, > ~10 parameters left free to be determined by the fit  
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Complementarity of data

► HERA data
-- At low x (10-4 to 10-1)

* Sea quarks
* Gluon via scaling violation

► Fixed targets DIS data
-- Valence at high x 

► Hadron-hadron data (TEVATRON, LHC)
-- Gluon at high x

“Global” fitting on > 1000 
precise data points !

Various analyses
by various groups:
-- MRS
-- CTEQ
-- HERA PDF
-- NNPDF …
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Uncertainties of PDFs
► Experimental errors

-- Statistical uncertainties (“random”)
-- Systematical uncertainties (“correlated”)

* Correlation between data points;
one systematic source
e.g. HERA luminosity should
move all HERA data up/down
simultaneously

► Theoretical model assumption
-- Order (LO, NLO, NNLO….)
-- Choice of μ0

2

-- Choice of functional form :  CTEQ uses                etc., NNPDF does not
use function

-- Treatment of heavy-flavor quarks
* variable flavor number scheme, fixed flavor number scheme, etc…

-- Cut on data sets (to define pQCD safe region)
* W2 > 20 GeV2,  Q2 > 4 GeV2
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0
21 xAxAxxAq AA

i ++−=μ
4

31 AxA+

Neural Net

Diagonarized PDF error matrix
LHPDF PDF error sets:   

1…20 etc.

You need to run your MC
with ~20 times with different
“PDF error sets” to evaluate
PDF systematic

Comparing CTEQ vs MRS is not a “correct” method to evaluate systematic error.
(Just to give  a “feeling” of it ; better than not to do) 
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PDF -cont’d-

Evolution as Q2 goes.
Sea/gluons grow rapidly.
Their relative uncertainty
gets smaller.
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Description of data
HERA F2
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At the HERA ultimate Q2 region

e p

NC Event CC Event

Selection: presence of high energy 
scattered electron

E’e > 10 GeV
Kinematics well reconstructed using 

electrons and/or hadrons

Selection: presence of large missing 
transverse momentum: PT,miss

PT, miss > 12 GeV
Kinematics reconstructed using 

hadrons only

e p
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EW unification

H.Murayama @ KEK TC 2007

NC and CC cross sections become similar at EW scale
“EW unification”        (Differences remained are mainly due to PDFs)
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Wrap up



Topics discussed
► Structure function to describe proton structure
► QCD inspired Quark-Parton Model

-- Scaling violation with DGLAP evolution
-- Factorization

► How to determine PDFs
-- Global fitting and its error

How these descriptions reproduce data well

References

Deep Inelastic Scattering (Oxford press)

-- R. Devenish, A. Cooper-Sarkar

39



40

End of Day-2


