QCD Lecture [Day 3]

Kunihiro Nagano (KEK)

3rd France-Asia Particle Physics School (FAPPS11) Les Houches, France, 14/Oct/2011

1

Plan for 3 days lectures

- Day-1: Basis of QCD
- Day-2: Proton structure @ lepton-hadron collision
- Day-3: Jets @ hadron-hadron collision

► Leant from Day-2:

- -- Factorization into ME and PDF
- -- How PDF is determined

QCD knowledge necessary for

doing physics at LHC

Day-3 is to use PDF for LHC physics

Introduction

• Towards observables at LHC

LHC and HERA

- ► HERA
 - -- Measure proton structure with electron as a probe
 - -- Search for new particle/physics in e-q elementary process
- ► LHC
 - -- Search for new particle/physics in q-q, q-g, g-g elementary process
 - -- Needs proton structure information as a mandatory input ⁴

Kimematics (a) LHC

• Main x range is same between LHC and HERA

Kimematics (a) LHC

• Main x range is same between LHC and HERA

Up to detector level

► Connection up to detector level (hadrons): we have inputs (PDF etc)

but it is still far up to outputs...

Up to detector level -cont'd-

Connection up to detector level (hadrons): Parton shower model

For more,

 \rightarrow Lectures by

Prof. Kurihara

Up to detector level -cont'd-

For more, → Lectures by Prof. Kurihara

Connection up to detector level (hadrons): Parton shower model

Have learned @ lecture by Prof. V. Ruhlman-Kleider

Up to detector level -cont'd-

Connection up to detector level (hadrons): Parton shower model

Jet algorithms

• We need a good observable which allows direct/robust comparison between theory and experiment

<u>Jet</u>

► Partons contributed to a hard scatter tend to form a spray of collinear hadrons; "Jets" → A good measure to relate detector level and parton-level hard scatter "Window for partons"

- To be precise, need a "well-defined" jet algorithm
 - -- How to define jets

<u>Jet</u>

► Partons contributed to a hard scatter tend to form a spray of collinear hadrons; "Jets" → A good measure to relate detector level and parton-level hard scatter "Window for partons"

- To be precise, need a "well-defined" jet algorithm
 - -- How to define jets

<u>Jet</u>

► Partons contributed to a hard scatter tend to form a spray of collinear hadrons; "Jets" → A good measure to relate detector level and parton-level hard scatter "Window for partons"

Jet algorithms

Cone algorithms

Recombination algorithms

- -- Search for a "cone" in which the vector sum particles inside the cone points to the center of the cone
- -- Used at TEVATRON
- Pros

-- Circular cone shape

- Cons
 - -- Often infrared unsafe
 - (except for SisCone)
 - -- Overlapping cones handling

 \rightarrow Next page.

- -- Successively find "closest" pair of particles and combine them
- -- Used at e-e, e-p and LHC
- Pros
 -- Infrared safe
 Cons
 -- Irregular shapes
 - (except for Anti-kT)

In this lecture, concentrate on recombination algorithms.

Infrared safety

(infinities will not cancel) \rightarrow divergent results

Kt(Durham) algorithm for e⁺e⁻

► Metric

Kt for hadron collider

► Metric ee: $y_{ij} = \frac{2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})}{O^2} \approx \frac{\min(E_i^2, E_j^2)\theta_{ij}^2}{O^2} \approx \frac{k_T^2}{O^2}$ pp: $y_{ij} = \frac{\min(p_{t,i}^2, p_{t,j}^2)\Delta R_{ij}^2}{R^2}$ Longitudinally invariant by using $\Delta R_{i,j}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$ $y_{ii} = p_{t,i}^2$ New parameter $(\eta = y \text{ when a particle is massless})$ 1. Calculate y_{ii} for all pairs among all particles 2. Find minimum y_{ii} -- If ij, recombine them -- If ii, call i a jet and remove from list of particle 3. Repeat from step 1 until no particle left.

- R : sets minimum separation ΔR^2 between any pair of jets
- pt cut on the jets

Shapes of Kt jets

 \rightarrow Is there any non cone-based jet algorithm that can obtain circular jets ? ¹⁹

Anti-Kt algorithm

Jet algorithms

Cone algorithms

Recombination algorithms

- -- Search for a "cone" in which the vector sum particles inside the cone points to the center of the cone
- -- Used at TEVATRON
- Pros
 - -- Circular cone shape
- Cons
 - -- Often infrared unsafe (except for SisCone)
 - -- Overlapping cones handling

- -- Used at e-e, e-p and LHC

Parton shower and resummation

- Now we have a robust jet definition.
- Next, we need more to connect: ME+PDF \rightarrow hadron
 - -- Parton shower
 - -- Hadronization

Just to get a rough overview on the technique of this connection. For more details → Event Generator lecture by Prof. Kurihara

Parton shower (PS) model

For more, → Lectures by Prof. Kurihara

► QCD branching

-- Quite similar to the DGLAP evolution

For computer simulation, it is instead convenient to define "**Sudakov form factor**"

 $\Delta(t)$

 \rightarrow Survival probability

Prediction with computer simulation

ME-PS matching

Matrix-Element calculation (hard scatter)

- -- Excellent in simulating: well separated, hard partons, while
- -- problems with collinear/soft partons

Parton shower

- -- Hard, wide-angle emissions are poorly approximated, while
- -- soft/collinear emissions are well described

Clearly, it would be desirable to combine ME and PS approaches, however, it is not a trivial work...

> (To understand this) Let's look a bit more on PS what it is actually doing.

Resummation: when "logs" are not so small

Generally, partonic observable behaves:

$$\hat{O} = 1 + \alpha (L^2 + L + 1) + \alpha^2 (L^4 + L^3 + L^2 + L + 1)...$$

"L": represents "log"
"1": represents π, 2 etc...

 \rightarrow If L is not so small, calculation only with αL^2 will not be a good approx.

"Resummation": re-organize / re-sum such that

$$\begin{split} \hat{O} &= 1 + \alpha_s (L^2 + L + 1) + \alpha_s^2 (L^4 + L^3 + L^2 + L + 1) + \dots \\ &= \exp\left(\underbrace{Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots}_{NLL}\right) \underbrace{C(\alpha_s)}_{\text{constants}} \\ &+ \text{ suppressed terms} \end{split}$$

"LL": Leading Log $\alpha^n L^{2n}$ "NLL": Next-to-Leading Log $\alpha^n L^{2n-1}$

When "log"s become not so small ?

• Generally speaking, when there are > 1 typical scales in the process

- -- If there is only one scale, e.g. inclusive DIS as Q²: lnQ^2/μ^2
- Recoil logs -- E.g. Z production in p-p, Z's p_T distribution $\rightarrow L = \ln \frac{p_T^2}{m_Z^2}$

Resummation -cont'd-

This is actually what we have done with PS, DGLAP

► DGLAP is a derivative equation \rightarrow When we are solving it numerically

- from μ_0^2 to μ^2 -- By numerically transferring it with many steps at μ_1^2 , μ_2^2 , μ_3^2 ... we are effectively summing up all logs of α L from μ_0^2 to μ^2
 - ► Parton shower is also resummation

ME+PS matching -cont'd-

For more, → Lectures by Prof. Kurihara

ATLAS EXPERIMENT http://atlas.ch	QCD predictions (and postdictions) NLO
lowest order in α_s	up to I loop + parton shower
Bray p	Emits as many gluons you can, but in the soft or collinear approximation (larger contribution)
LO MC	Pythia, Herwig LO process + showering + fragmentation + particle decays. Tuned on data to get best agreement (often good prediction of shapes, large deviation in absolute values)
NLO parton level	only partons or gluons in the final state (Just compute the pQCD part of the process): NLOJet++, MCFM, DIPHOX, JETPHOX
NLO MC + parton shower	Hard process computed at NLO, showering performed by PYTHIA or HERWIG.
NLO + resummation	FONLL(QQ, NLO + NLL), RESBOS (Drell Yan, NLO+NNLL; di-photons) The soft and collinear emission is computed analytically at higher orders.
Higher order tree level MC.	Exact computation of all tree level diagrams, but missing loop contribtions, avoid double counting by requiring that all hard jets match a parton ALPGEN, SHERPA(+ parton shower)
NNLO parton level	FEWZ, DYNNLO, HNNLO,
В. DI МІССО	ATLAS STANDARD MODEL B.Di Micco @ DIS, 2011 15

Hadronization models

For more, → Lectures by Prof. Kurihara

-- "String" representing color flux stretched from initial state

- -- Gluon produces "kinks" in the string
- -- Gluon splitting into quarks produce another string.
- \rightarrow Strings break up into hadrons

PYTHIA/JETSET

Cluster model

Prediction with computer simulation

- -- After parton shower, gluons are split into quark-antiquark
- -- Color singlet ("white") combinations to form cluster

17

→ Clusters undergo isotropic decay into pairs of hadrons

HERWIG

Jets @ LHC

Now we have various theoretical predictions.
 Let's see how LHC data are

Jets @ LHC

• QCD validation at unexplored kinematic phase space -- We are seeing $p_T \ge 1$ TeV and di-jets with $M_{ij} \ge 3$ TeV !

Jet with $p_T \ge 1$ TeV

Inclusive jet cross sections

>~10 orders of magnitude.

36

Inclusive jet cross sections -cont'd-

- Anti-k_T, R=0.4
 -- p_T(jet)>20 GeV to 1.5 TeV
 -- |y_{jet}| up to 4.4
- "NLO pQCD × Non-pert corr" \rightarrow NLO @ parton level (NLOjet++)
 - with hadronization (Pythia) f = -----

X

without hadronization (Pythia)

Pythia, Herwig LO process + showering + fragmentation + particle decays. LO MC Tuned on data to get best agreement (often good prediction of shapes, large deviation in absolute values) only partons or gluons in the final state (Just compute the pQCD part of NLO parton level the process); NLOJet++, MCFM, DIPHOX, JETPHOX NLO MC + Hard process computed at NLO, showering performed by PYTHIA or HERWIG parton shower ell Yan NLO + res d col ted an ns, bu ligher ord utatio l hard e cour level M HERP,)(NNLO Z, DYN

POWHEG predictions are in agreement with data within uncertainties

Di-jet cross sections

"NLO pQCD × Non-pert corr"
→ NLO @ parton level (NLOjet++)
× with hedronization (Pathia)

with hadronization (Pythia) f = -----

without hadronization (Pythia)

Dijet cross section as a function of invariant mass

QCD prediction works up to m(jet-jet) < 4 TeV

• Alpgen describes the data well, while Pythia overestimates 3-jet at $200 < H_T^{(2)} < 400 \text{ GeV}$

• NLO pQCD prediction describes the data well, except for the lowest $H_T^{(2)}$ bin.

38

• POWHEG (NLO MC) + Pythia prediction shows good agreement. $_{40}$

• MC@NLO (NLO MC) + Herwig prediction shows different rapidity distribution

Wrap up

Topics discussed

- ► Jet clustering algorithms: Anti-kT, kT, Cone etc...
- ► Parton shower: leading log resummation
- Various QCD predictions
 - -- LO + PS (Pythia etc.): difficult to simulate "nJets"
 - -- NLO(NLOJet++), NLO + PS MC (POWHEG),
 - LO + HOtree (Alpgen) : reasonably ok
 - \rightarrow Be aware the QCD phase space you are working.

References

- QCD and Collider Physics (Cambridge press)
 -- R.K.Ellis, W.J.Stirling, B.R.Webber
- arXiv:1101.2599 (Review of MC generators)
- Summary talks (e.g. at DIS 2011 conf.)
 - -- S. Hoeche: "Status of MC generators"
 - -- S. O.Moch: "Hard QCD at higher orders"
- Recent talks by Atlas/CMS ☺

End of Day-3

Z/W recoil pT @ LHC

44