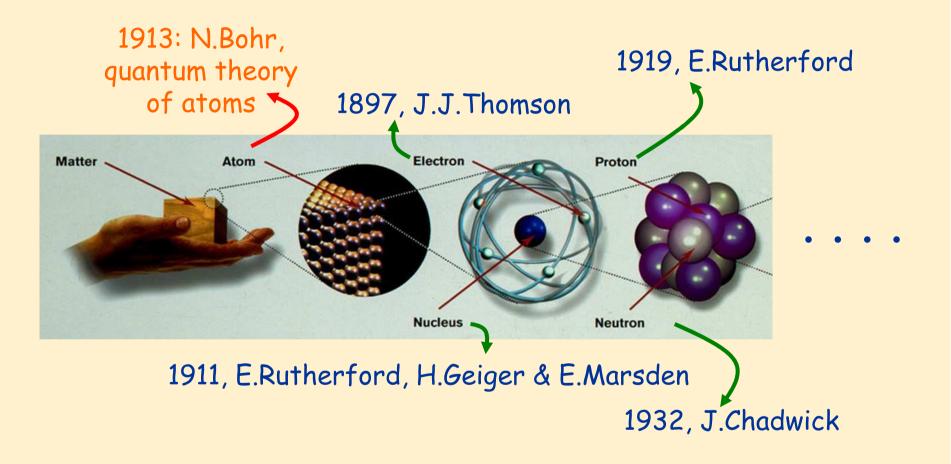
Electroweak interaction

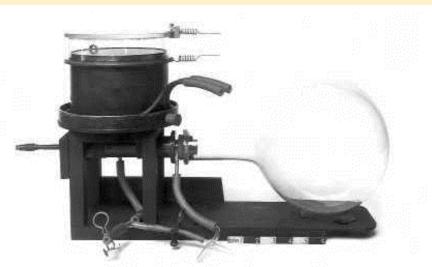
Vanina Ruhlmann-Kleider CEA-Saclay/Irfu/SPP

Basics and history
 The Standard Model
 Tests of the Standard Model

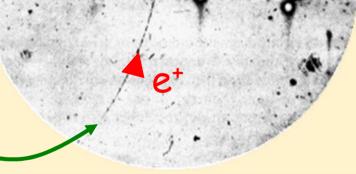

Lecture 1

Basics and history

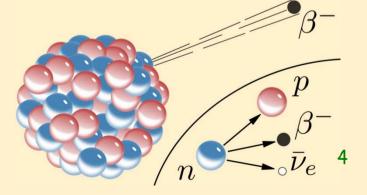
- 1. History 1: the birth of particle physics
- 2. Basics: particle features, importance of symmetries
- 3. History 2: towards the Standard Model of the electroweak interaction

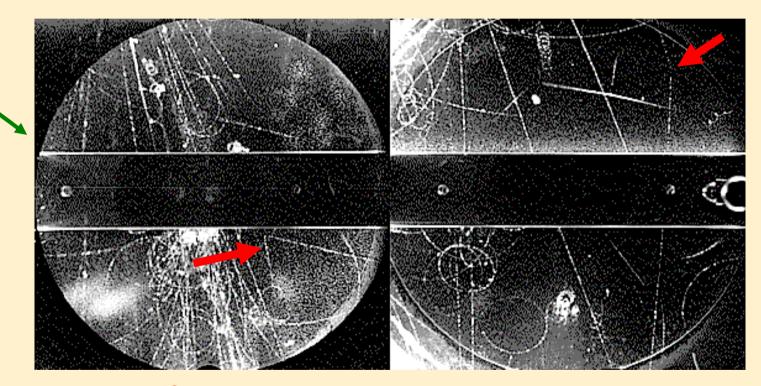

1. History 1

The starting point: atomic structure

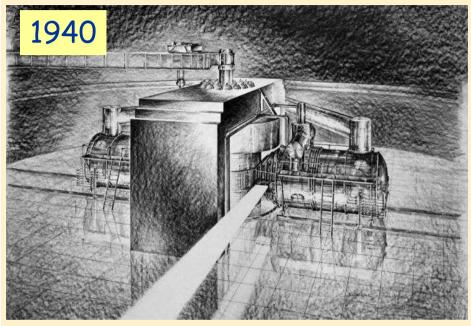

1931, P. Dirac : e⁺ is predicted

Antimatter exists !



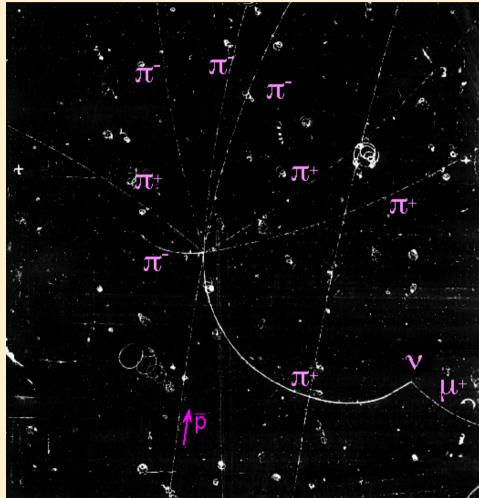

Neutrinos are predicted

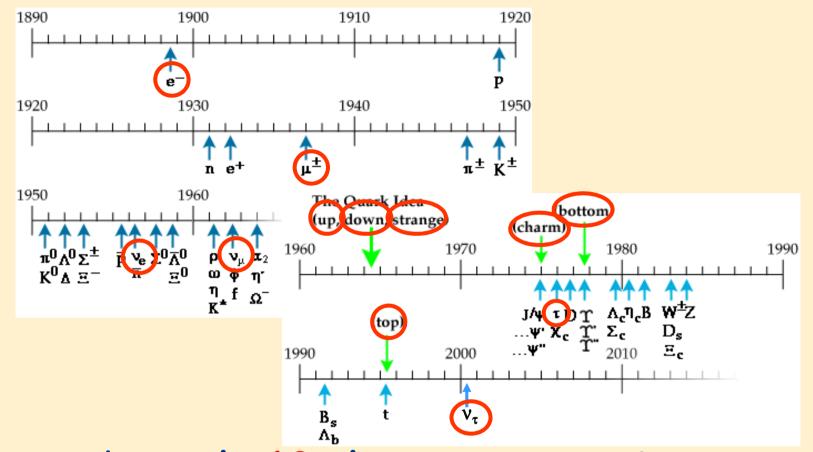
1930, W.Pauli : ν is postulated to preserve energy conservation in β decays


Beyond ordinary matter ...

1937, muon discovery (C. Anderson & S. Neddermeyer)
1947, pion discovery (C. Powell)
1947 discovery of neutral and charged kaons (G. Rochester & C. Butler)

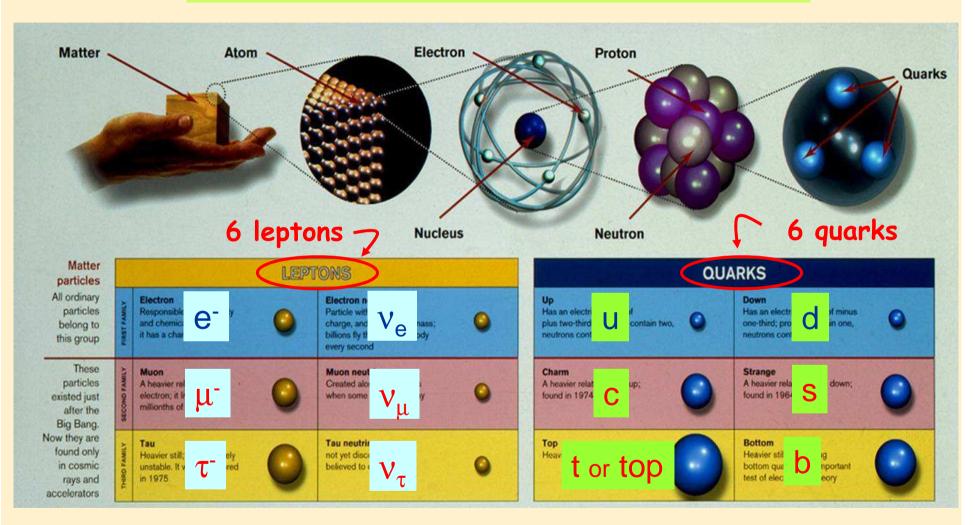
 $\begin{array}{ll} \mathsf{K}^{0} \rightarrow \pi^{\scriptscriptstyle +} \ \pi^{\scriptscriptstyle -} & \mathsf{K}^{\scriptscriptstyle \pm} \rightarrow \mu^{\scriptscriptstyle \pm} \ \nu \\ \end{array}$ Photographs of cloud chamber exposed to cosmic rays


Accelerators come on stage

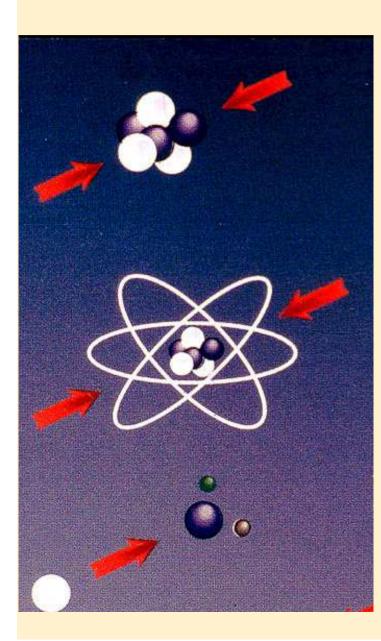

1948, Berkeley cyclotron at 95MeV/nucleon: first π production in laboratory (E.Gardner, G.Lattes)

<u>note</u>: 1 MeV = 10⁶ eV, 1 GeV=10⁹ eV

Bubble chamber photograph: proton proton interaction



More and more particles !


... but only 12 elementary constituants governed by 3 fundamental interactions in a quantic, relativistic and unified framework: the Standard Model of particle physics 7

The 12 elementary constituants

All constituants observed experimentally: from e⁻ (1897) to top quark (1995) and v_{τ} (2000). So far, no internal structure detected.

The 3 fundamental interactions

Strong interaction:

- Binding force in nucleons and atomic nuclei; nuclear reactions in stars
- ➤ range: 1fm = 10⁻¹⁵m
- > mediated by gluons

 \rightarrow See lectures of Pr. K.Nagano

Electromagnetic interaction:

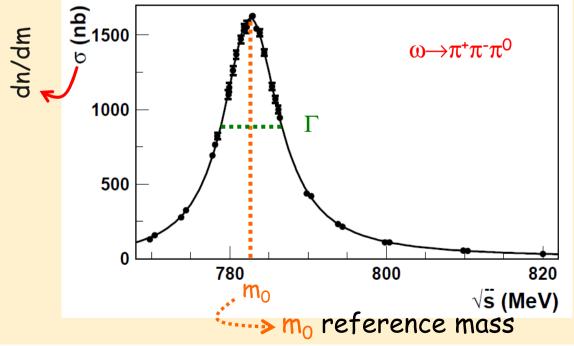
- Binding force in atoms, molecules and cristals; electricity, magnetism
- range: infinite
- > mediated by the photon

Electroweak interaction

Weak interaction:

- Radioactive decays; nuclear reactions in stars
- ➢ range: 10⁻¹ଃ m
- > mediated by the W and Z bosons

2. Basics


X

Particle features

Particle = mass eigenstate:
 mass, spin (S), quantum numbers (P, C...)

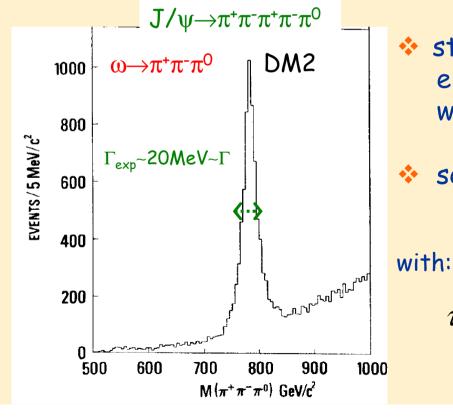
o Unstable particle: mass distribution

$$\Delta \boldsymbol{\mathcal{E}}.\Delta \boldsymbol{\mathcal{T}} \approx \hbar \overset{\textit{rest-frame}}{\Rightarrow} \Delta \boldsymbol{\mathcal{m}}\boldsymbol{\mathcal{C}}^{2}.\boldsymbol{\tau} \approx \hbar \Rightarrow \Gamma \boldsymbol{\mathcal{C}}^{2}.\boldsymbol{\tau} \approx \hbar \Rightarrow \Gamma \boldsymbol{\mathcal{C}}^{2} = \frac{\hbar}{\tau}$$

 Γ : particle total width

 τ : particle mean lifetime

mass distribution:


$$\frac{dn}{dm} \propto \frac{1}{(m-m_0)^2 + \frac{\Gamma^2}{4}}$$

Breit-Wigner shape (here non relativistic) 10

Particle features

• Particle width and interaction strength:

strength	interaction	example	τ (s)	Γ c ²	mc²(MeV)
	strong	$\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$	6.6 10 ⁻²³	10 MeV	783
	electromagnetic	$\pi^0 \rightarrow \gamma \gamma$	0.8 10-16	8 eV	135
	weak	$\pi^+ \rightarrow \mu^+ \nu$	2.6 10 ⁻⁸	2.5 10 ⁻⁸ eV	140

strong interaction: Γ
 electromagnetic interaction: Γ or path
 weak interaction: mean path

several decay channels:

$$\Gamma_{tot} = \sum_{channels} \Gamma_{channel}$$

$$\tau = \frac{\hbar}{\Gamma_{tot}c^2}$$
 and $Br_{channel}$

11

channel

Importance of symmetries

- For any physical object (e.g. a system of particles in interaction) Non observable property
 Invariance under symmetry transformation
 Conservation law (for charges & currents)
- o Examples:

non observable property	symmetry transformation	conserved charge
absolute time	time translation	energy
absolute coordinates	spatial translation	momentum
absolute reference frame	rotations	angular momentum
left/right directions	space reflection	parity
absolute phase	global phase change	global charge

 QM approach: symmetry operator ([A,H]=0) eigenstates are stationary states, and their eigenvalues are conserved charges

Examples of symmetries, 1

Discrete symmetry: space reflection or parity

- Definition: $\Pi |\vec{r}\rangle \equiv |-\vec{r}\rangle$ with $\Pi^2 = \mathcal{I}d$ $\Pi \Pi^+ = \Pi^+ \Pi = \mathcal{I}d$
- Effect on quantum states: $\langle \vec{r} | \Pi | \psi \rangle = \psi(-\vec{r})$
- Eigenvalues:

 $\Pi|\psi\rangle = \lambda|\psi\rangle$ and $\Pi^2 = \mathcal{Id} \Rightarrow \lambda^2 = \mathbf{1} \Rightarrow \lambda = \pm \mathbf{1}$

- \Rightarrow eigenstates of even or odd parity
- More definitions:
 - Vector : λ =-1

Pseudovector (or axial vector): λ =+1

Scalar: λ =+1

Pseudoscalar: λ =-1

 \vec{r} Π , $\vec{r} \wedge \vec{p} \xrightarrow{\Pi} \vec{r} \wedge \vec{p}$ $\vec{r}.\vec{p} \xrightarrow{\Pi} \vec{r}.\vec{p}$ $(\vec{r} \wedge \vec{p}).\vec{r'} \xrightarrow{\Pi} (\vec{r} \wedge \vec{p}).\vec{p'}$

X

Discrete symmetry: space reflection or parity

• Examples of particle intrinsic parities:

Scalar :	f ₀ (980)	JP=O+
Pseudoscalar :	π^{O} π^+ π^-	J ^P =O⁻
Vector :	ω (782)	J ^P =1⁻
Pseudovector :	h ₁ (1170)	J ^P =1+

Parity conserved in electromagnetic and strong interactions but violated in weak interactions (many experiments in the 50's)

- o Charged kaon decays into three and two pions (Lee & Yang, 1956)
- o Radioactive decays of polarized nuclei (Wu et al. 1957) ←
- o Charged pion decay into muon-neutrino pair (Lederman et al., 1957)

Parity violation in weak interactions

X Radioactive decays of polarized Co⁶⁰ (Wu et al. 1957) $Co^{60} \rightarrow Ni^{60*}e^-\overline{V_2}$

• β decay: $n \rightarrow pe^{-}v_{e}$ initial state: polarized Co⁶⁰ (J^P=5⁺) If parity conserved: $n_A = n_B$ Measurement: **Co**⁶⁰ **Co**⁶⁰ e $n_A >> n_B$ \Rightarrow strong asymmetry of the e⁻ e⁻ angular distribution : $\frac{dn}{d\cos\theta} \propto < \vec{S}_{co} > .\vec{p}_{e}$ $\vec{S}_{co}.\vec{p}_e$ is a pseudoscalar \Rightarrow parity violation 15

Examples of symmetries, 2

Continuous symmetry: U(1) global gauge symmetry

o Definition: $\psi(x) \rightarrow \psi'(x) = e^{-i\alpha}\psi(x)$ for the free Dirac field

- Effect on Lagrangian density $\mathcal{L} = \overline{\psi}(x)(i\gamma^{\mu}\partial_{\mu} m)\psi(x)$ invariance (\Leftrightarrow no effect of a global phase change)
- o Conservation law: Noether's theorem (1918) one conserved current : $\mathcal{J}^{\mu}(x) = \overline{\psi}(x)\gamma^{\mu}\psi(x)$ $\partial_{\mu}\mathcal{J}^{\mu}(x) = 0$ one conserved charge:

$$Q(t) = \int dx^3 \mathcal{J}_0(x) = \int dx^3 \psi^+(x) \psi(x)$$

 $\frac{dQ(t)}{dt}=0$

Continuous symmetry: U(1) global gauge symmetry

• Properties of the conserved charge, Q:

Q, generator of the symmetry group

 $|\psi'
angle = \mathcal{U}_eta|\psi
angle = m{e}^{-ieta \mathcal{Q}}|\psi
angle$ with

with $oldsymbol{Q}|oldsymbol{\psi}
angle=oldsymbol{q}|oldsymbol{\psi}
angle$

conservation of Q eigenvalues (q)

• Applications:

Q: electric charge operator \Rightarrow electric charge conservation Q_B: baryon-charge operator \Rightarrow baryon-number conservation

 Q_L : lepton-charge operator \Rightarrow lepton-number conservation

 <u>Note</u>: these conservation laws hold for free Dirac fields but they are preserved in the Standard Model of the electroweak and strong interactions

Examples of symmetries, 3

Continuous symmetry: U(1) local gauge symmetry of QED

• From global to local gauge transformations: $\alpha \rightarrow \alpha(x)$

for the free Dirac field $\psi(x) \xrightarrow{U_{\alpha}} \psi'(x) = e^{-i\alpha(x)}\psi(x)$

• To preserve Lagrangian density invariance: $\mathcal{L} = \overline{\psi}(x)(i\gamma^{\mu}\partial_{\mu} - m)\psi(x) \rightarrow \mathcal{L} = \overline{\psi}(x)(i\gamma^{\mu}D_{\mu} - m)\psi(x)$ with

 $D_{\mu} = \partial_{\mu} + iqA_{\mu}(x)$ $A_{\mu}(x)$ $A_{\mu}(x) \longrightarrow A'_{\mu}(x) = A_{\mu}(x) + \frac{1}{q} \partial_{\mu}\alpha(x)$ gauge-covariant derivative
new vector field called gauge field $A_{\mu}(x) \longrightarrow A'_{\mu}(x) = A_{\mu}(x) + \frac{1}{q} \partial_{\mu}\alpha(x)$ gauge field transformation
18

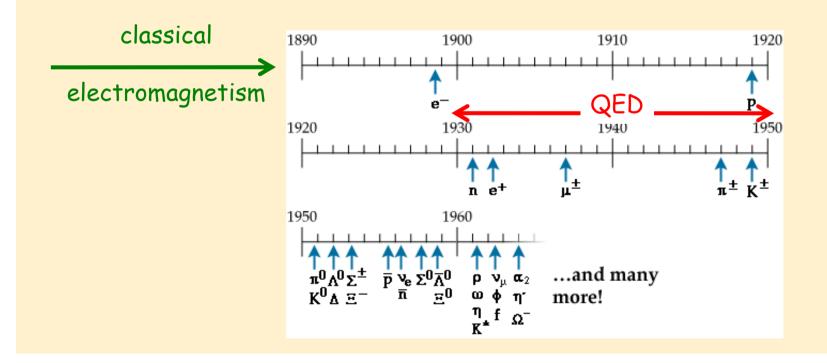
Continuous symmetry: U(1) local gauge symmetry of QED

• Full QED Lagrangian:

$$\mathcal{L}_{QED} = \overline{\psi} i \gamma^{\mu} (\partial_{\mu} + i q A_{\mu}) \psi - m \overline{\psi} \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

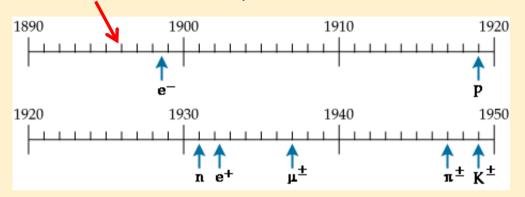
with

$$F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$$


 A_{μ} : vector field interacting with matter Dirac fields: $\mathcal{L}_{QED}^{int} = -q\overline{\psi}\gamma^{\mu}\psi A_{\mu}$ \Rightarrow electromagnetic interaction mediated by photons Photon: massless gauge boson ($A_{\mu}A^{\mu}$ is not gauge-invariant) \Rightarrow agrees with the infinite range of the em interaction QED as an abelian gauge theory is renormalizable

• A vector field describing the em interaction enters naturally if gauge invariance is assumed \rightarrow extends this to other two interactions <u>Note</u>: free matter fields do not exist

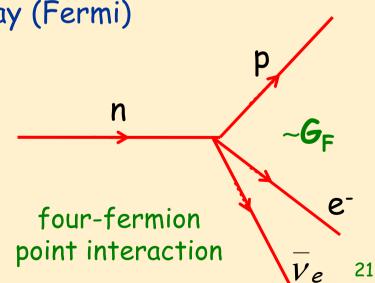
3. History 2


Electromagnetic interaction

- XIXth cent.: classical electromagnetism (Maxwell equations 1873)
- o 1930: relativistic and quantum electron equation of motion (Dirac)
- 1940: quantum field theory of electromagnetism as an abelian gauge theory (Feynman, Dyson, Schwinger, Tomonaga)
- o 1951: precision tests of QED (Lamb)

Radioactive decays

o 1896: discovery of natural radioactivity (Becquerel)



o 1930: neutrino postulate (Pauli) o 1934: first theory of $n \rightarrow pe\overline{v} \beta$ -decay (Fermi)

$$\mathcal{L}_{F}(x) = -\frac{\mathcal{G}_{F}}{\sqrt{2}} J^{\mu}_{hadr}(x) J^{lept}_{\mu}(x)$$

 $\mathcal{G}_{F}\approx\frac{10^{-5}}{m_{p}^{2}}$

with

Weak interaction

- o 1930-1950: discovery of $\pi \rightarrow \mu$ & $\mu \rightarrow e$ decays, long lifetimes \Rightarrow weak interactions as a distinctive class of interactions
- o 1956:v confirmed & parity non-conservation in weak interactions
 ⇒1958: V-A theory of the weak interaction (Feynman & Gell-Mann; Sudarshan & Marshak; Sakurai)

 $\gamma_{\mu} \gamma_5$: axial-vector

e.g. for leptons:

only left-handed fermions in charged weak currents ("maximal violation parity")

$$\mathcal{J}_{\mu}^{lept} = 2\overline{v}_{e,L}\gamma_{\mu}e_{L}$$
 with $\psi_{L} = \frac{1}{2}(1-\gamma_{5})\psi_{22}$

 γ_{μ} : vector

Weak interaction

- Strong points of the V-A theory:
 - reproduces a lot of low-energy experimental results
 - led to postulate existence of a new heavy quark

$$\mathcal{J}_{\mu}^{lept} = \overline{v}_{e} \gamma_{\mu} (1 - \gamma_{5}) e + \overline{v}_{\mu} \gamma_{\mu} (1 - \gamma_{5}) \mu$$

by symmetry (Bjorken & Glashow, 1964) new charm quark $J_{\mu}^{hadr} = \overline{u}\gamma_{\mu}(1-\gamma_{5})d_{\theta} + \overline{c}\gamma_{\mu}(1-\gamma_{5})s_{\theta}$ $d_{\theta} = \cos\theta_{c}d + \sin\theta_{c}s \qquad s_{\theta} = \cos\theta_{c}s - \sin\theta_{c}d$

compulsory to suppress strangeness-changing neutral currents (Glashow, Iliopoulos & Maiani, 1970)

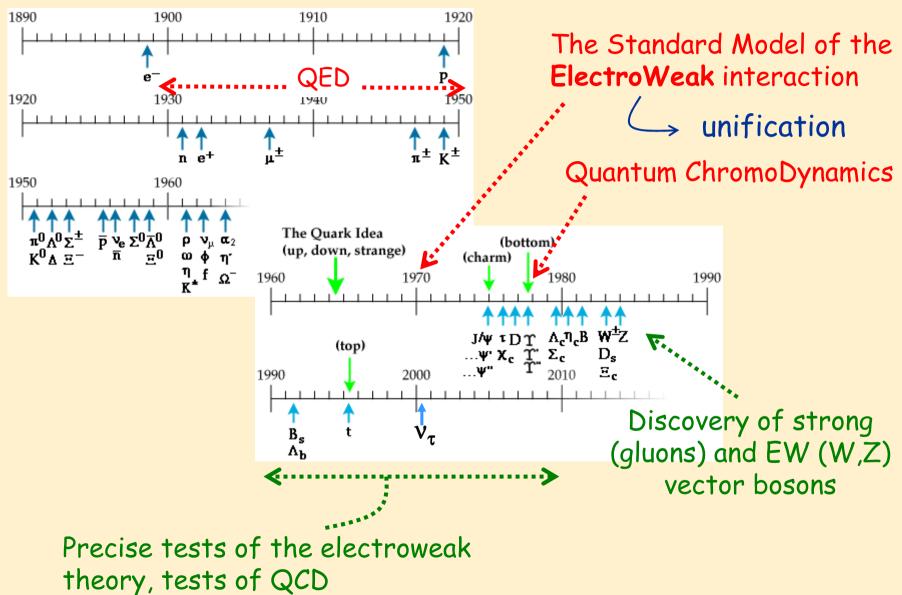
o But:

- does not explain CP violation by weak interactions, 1964
- lack of renormalizability and violation of unitarity

Weak interaction

o 1957/59: intermediate vector boson theory of the weak interaction (Schwinger, Bludman & Glashow) $\mathcal{L}_{IVB}^{int}(x) = g(J^{\mu}W_{\mu} + h.c.)$ $\frac{G_F}{\sqrt{2}}$ W/ $\frac{G_F}{\sqrt{2}} \propto \frac{g^2}{M_{\odot}^2}$ **g**

 \Rightarrow ~ gauge theory of the weak interaction with massive bosons o But:


lack of renormalizability (IVB mass) and violation of unitarity

24

Towards the Standard Model

- o 1957: idea of weak and electromagnetic unification (Schwinger)
- 1961: SU(2)×U(1) gauge theory of the electroweak interaction (Glashow)
 - Lack of renormalizability (IVB masses put by hand)
- 1967: spontaneously-broken SU(2)xU(1) gauge theory of the electroweak interaction (Weinberg & Salam)
 - Renormalizable theory (IVB masses generated by the Higgs mechanism). Unitarity preserved.
 - Predicts neutral weak currents and one Higgs boson.
- 1971: proof of renormalizability of gauge theories, with or without spontaneous symmetry breaking ('t Hooft)
- o 1973: neutral current discovery (Gargamelle experiment, CERN)

The emergence of the Standard Model

