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® |st lecture: Introduction to flavour physics

* Weak interaction processes (charges, neutral
processes, GIM mechanism)

* Discovery of CP violation in the K system

* Measuring oscillation in the B system

® 2nd lecture: Describing oscillations within SM
* Kobayashi-Maskawa mechanism for CP violation

* Testing the unitarity of the CKM matrix
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® 3rd lecture: Searching new physics with flavour
physics

* Some examples in the past

* Some examples in the future



Flavour physics in SM

To learn in this part...

|. Weak interaction processes (charges, neutral
processes, GIM mechanism)

2. Matter-Anti matter asymmetry: CP violation
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Theoretical description in SM:
Charged and Neutral Currents
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Y Theoretical description in SM:

// Charged and Neutral Currents
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Neutral Current
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Forbidding the FCNC
~ GIM mechanism ~

u u S d
Flavour Changing
T Z Tz g Neutral Current
(FCNC)
allowed not allowed
Charged current

P _ (o) 1 0 cosf. sinf. dr,
mass = \UL;CL){ 4 4 —sinf,. cosf, SL

up—type down type

Neutral current

1 0 1 0
—— cosf, —sinf, cosf,. sinf. dr,
T (dL’SL)( sinf, cosf, )( —sinf,. cosé, ) ( Sy, ) down-type

= upup +cper +drdn + 308y



Forbidding the FCNC
~ GIM mechanism ~

Charged current

Jmass

Neutral current

Jweak

U S d
Flavour Changing
T Z V4 Neutral Current
(FCNC)
allowed not allowed
o 1 0 cosf. sind, dr [970
B <uL’CL)( 0 1 ) ( —sinf,. cos6
up—‘;ype downtty

(ﬂ z ) 1 0 1 0 ur,
L=\ 0 1 0 1 cr
S cosf, —sinf,. cosf, sinf,. dr,
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Only same flavour allowed




Forbidding the FCNC at loop level
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Forbidding the FCNC at loop level
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Forbidding the FCNC at loop level
~ GIM mechanism 2~

S d s WT d
FCNC at loop
Y Z Y Z level
not allowed allowed
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;’YZ f(m)Loop Function ;VZ

At the limit of mu=mc, two diagrams exactly cancel!!!



Forbidding the FCNC at loop level
~ GIM mechanism 2~

S d WK d
\5/ FCNC at loop
Y4 YZ level
not allowed allowed
s WX d s Wi d
Y Z Y Z
_—""_ Note: here, two-generation is assumed. Once T

the top quark is introduced, the FCNC at loop level becomes significantly large!
(we’ll see soon...)
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7 By the way, what is the origin of

£ that mixing

Yukawa Interaction
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Yukawa coupling S :
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Y4 is not-diagonal. Thus a rotaion to

the mass eigen-basis required!




@q . ° °
// By the way, what is the origin of
£ that mixing ?

Diagonalization

Inserting the

U‘mjwyr\/ matrix which

diagonalizes the Yd*




@’7
7 By the way, what is the origin of

’:\ o o 7
£ that mixing !

N

Diagonalization
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Unitary transformation -
to diagonalize the Ud(Yd) Ud — (Mg)dmg
Yukawa matrix

Transformation from d d
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CP

transformation in a few words

C: Charge transformation
P: Parity transformation

A few key equations...

CPIKY = |K) K% =3d
— —0 —
CP KO> = |KY) K =ds
CP|rY) = —|=%) . -
CP 7T+7T_> — —I—‘ﬂ' 7T_> +7T_ _Euu j d_dd_
CP|(ntr )’ = (=) (@t )n® e T




CP “invariance” of K system

Two decay channels of K are observed... (0-T puzzle)
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CP “invariance” of K system

Two decay channels of K are observed... (0-T puzzle)
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CP “invariance” of K system
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How can we make two CP (+ and -)
states from K%and K°?

CPIK®) = [K) K% =3d

CPIK)) = |K°) K =ds




CP “invariance” of K system

L £ 4 [ £ 4

How can we make two CP (+ and -)
states from K%and K°?

CPIK’) = |K) KY =3d
CPIK) = |K° K =ds

ANSWER | Ifthe K is a mixed state of K° and K° in nature...

K1) = (IKO> +[E))

[K2) = (IKO> &)

=l Sl



CP “invariance” of K system

L £ 4 [ £ 4

How can we make two CP (+ and -)
states from K%and K°?

CPIK) = |K
CPIK) = |K° K =ds

ANSWER | Ifthe K is a mixed state of K° and K° in nature...

1 0 —0

R CP|IK1) = +E(|K )+ [K))

K) = (K +K") T
1 1 0 —0

Ky) — 7(|K0> K l; CPIKz) = — (K%)= [K)

—~ —|K,) |cPoODD




CP “invariance” of K system
Distinguishing K| and K3

By the decay channel By the life-time

Mk=498MeV
— @ Mr=140 MeV
Phase space for 211 is about 600

@ larger than for 31T
:II : 4 )

(K1) ~ 0.90 x 1079
@ r(Ky) ~ 5.1x10"%s
/ - Y
@ i’ @ Accidental phase space

@ suppression:
short-lived K is K| and long-

lived one is K»




CP non-invariance of K system

Cabibbo (1966)




CP non-invariance of K system

First observation of the CP violation
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CP non-invariance of K system

We thought... 1
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CP non-invariance of K system

We thought... 1
I CPIK) = +5 (K% +[K))
K) = (K + ) SN k) [cPEven
1 1 o =0
o) = (K%)= [K) CPIK:) = (1K) = [K)
= —|K,) |cPoODD

But, actually... K and K° can mix through box diagram.

Thus, they are not mass eigenstate.

K° and K° can mix!

5 d
- — (_ — -
N Wt W=
d u7 C7 t S




CP non-invariance of K system

So the mass eigenstate is a mixture of two CP eigenstate!

Ks) = =5 (1K) +aK"))
= Lo Dim+ - D]
K1) = s (0K~ aR))
p

_ b4 4
= Pla- DK+ s Hikay

# At p=qg=1, we recover the previous result.



CP violation in K system
vs B system
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CP violation in K system
vs B system

Cosem] T
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CPIK,) = \%(\KOH\K ) Ks) = — (K% +aR")
= |Ki)  |CPEVEN = g[(1+%)lK1>+(1—%)|K2))]

CPIKy) = (K%)= [K") ) = (k%) oK)

= —|K2) |cpPoDD _opf, 4 q
= Pla- DKy +a+ ik
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CP violation in K system
vs B system

K system We can know the CP

of the original particle from

CP EVEN
U% the decay length.

t=0

B system

/\ We can NOT know
CP EVEN what was the CP of the

‘ original particle...
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How do we observe
the CP violation in B system

It’s actually even simpler...

If we can say the original particle was B or B?, then
we can simply measure the difference of B® and B!



How do we observe
the CP violation in B system

In the case of B factories...
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In the case of B factories...
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How do we observe
the CP violation in B system

In the case of B factories...
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In the case of B factories...
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at t=0, initial P° / P state is produced
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t=0
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7 Oscillation with Weak interaction
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7 Oscillation with Weak interaction

>
i? > if there is interaction (AF=1)
> which does not mix P9 / P9...
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t=0 t=At
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7 Oscillation with Weak interaction

>
i? > if there is an interaction (AF=1,2)
> which mixes P? | PO state...
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t=0 t=At
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7 Oscillation with Weak interaction

L2
=

@ .0  [ui-
iite > | a(t)|P°) +b(t)|P")
Q@ @

t=0 t=At

The time evolution can be obtained by solving

O H represents the transition between (P%,P°)
? ﬁ& U(t) = HY(t) & (PO,P9). M and T are the off-shell and the

on-shell part, respectively.

Here H is the weak H =M — EI‘
interaction Hamiltonian 2 |
describing the AF=1,2 o My — 3001 Mg — 5T
transition —\ My — %Fm Moy — %FQQ
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/ Oscillation with Weak interaction

-
Now we diagonalize this matrix
H=M-— -T
2
_ ( My — 4011 Mip — 4T )
Moy — 5021 Moy — 5199
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7 Oscillation with Weak interaction

o
=

Now we diagonalize this matrix
1
H—M- T
2
_( M= 5T Mg — 5T
Moy — 5021 Moy — 5199

Using CPT invariance (M11=M2z, I'11=I22) and M and T being Hermitian, we find
the mass eigenstate P, and P;

—0

Py = plP")+qP) ¢
_O 9

P) = p|P%) —q|P") p

1 1 q 1
M, — -T1'v=M;— =T (M5 — =T
1 5 1 11 5 11+p( 12 5 12)

1 7 q 1
My — =T'9g = M1 — =1'11 — = (M2 — =T
27 52 11— 5t p( 12~ 5 12)
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Now we diagonalize this matrix
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_( M= 5T Mg — 5T
Moy — 5021 Moy — 5199

Using CPT invariance (M11=M2z, I'11=I22) and M and T being Hermitian, we find
the mass eigenstate P, and P;

—0

Py = plP")+qP) ¢
_O 9

P) = p|P%) —q|P") p

1 1 q 1
M, — -T1'v=M;— =T (M5 — =T
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Now we diagonalize this matrix
H=M-— -T
2
_ ( My — $T11 Mip — 5T )
Moy — 5021 Moy — 5199

Using CPT invariance (M11=M2z, I'11=I22) and M and T being Hermitian, we find
the mass eigenstate P, and P;

Py = pP)+aP) ¢ [Mp-im
Py = plP%) —qP") P Miz = 5T
0 _ 0 q -0
|P <t)> - f"’(t)‘P >_|_ pf_(t)‘P > : fj;(t) _ %e—i(M1—zT1/2)t [1ie—i(AM—|—iAF/2)t

P'(t) = f+<t>\P0>+§f_<t>rF”>

Time evolution formula
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/ Oscillation with Weak interaction

=

Now we diagonalize this matrix
l
H=M - -TI
2
_( Mui—5ln Mg — 1F12
Moy — 521 Moy — 3

Remember...\

CP wolation

Using CPT invariance (M1=M22, I'11=I'22) and M and T b{ing Hermitian ﬁni
the mass eigenstate P, and P; q/ 3 /
0 A
0 D Tk
Py = plPY+aP) ¢ M- i,
—0 ) T )
Py = p|P% —q|P) p Mz — 5T
0 _ 0 q -0
[PE(t) = f+@)|P >-|-pf—(t)\P ) . FL(t) = le—i(Ml—le/z)t [1ie—i(AM—|—z’AF/2)t
’ 2

P'(t) = f+<t>\P0>+§f_<t>rF”>

Time evolution formula
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7 Decay width with Weak interaction
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<7 Decay width with Weak interaction

L2
=

°.. 0

t=0 t=At
A(f) = (fIHRA=HPY)

> t

A(f) = (FIHAF=1PY)

D(PY(t) = f) o e THA()P | Ky (1) + K- 131@) +2Re [L7(1) @@

DP'(t) - £) x e AN | K (8) + K- (0 1@) +2Re |1

Q|3
t~
=

D

Ki(t)=1+e2t £ 2¢72% cos AML,

L*(t)=1— ATt 2ie2 8Tt gin AMt
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<7 Decay width with Weak interaction

°.. 0

CP violation
t=0 t=At

A(f) = (IR PO@))

L(PY(t) — f) oc e DY A(F)]? t)+ K_( (91@) + 2Re -L*(t) @'@
F(Fo(t)ﬁf)ae‘wlz(fﬂ Ko (0) + K- (o)) 1@) +2Re 17 (1) @)@

Ki(t)=1+et £ 2¢72% cos AML, L*(t)=1—e2 4 2iez T sin AMt



Gold-plated B—|/\pKs mode

Example of B—J/WKs mode where CPV is the best measured in the B system

" _ I(B"—J/¢yKs)-T(B°—J/¢yKs)
J/VKs =™ DB S J/wKs)+T(BO—J/yKs)
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Gold-plated B—|/\pKs mode

Example of B—J/WKs mode where CPV is the best measured in the B system

" _ I(B"—J/¢yKs)-T(B°—J/¢yKs)
J/VKs =™ DB S J/wKs)+T(BO—J/yKs)
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Gold-plated B—|/\WKs mode

Example of B—J/WKs mode where CPV is the best measured in the B system

" _ I(B"—J/¢yKs)-T(B°—J/¢yKs)
J/VKs =™ DB S J/wKs)+T(BO—J/yKs)

(=D @ 7@

In the B system, we have M 2>>[ |, thus

q _ My — 517, ~ | M — oio
p Mo — 2110 Mo

A Sl
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Gold-plated B—|/\WKs mode

Example of B—J/WKs mode where CPV is the best measured in the B system

" _ I(B"—J/¢yKs)-T(B°—J/¢yKs)
J/VKs =™ DB S J/wKs)+T(BO—J/yKs)

L

4 : ] ; _ A
/ ¢ ’ ,‘ . CcP violath
q P W q/p+ 1 occurs only if
g d there is a complex phase

In the B system, we have M 2>>[ |, thus

q _ My — 517, ~ My, _ e
p Mo — 2110 Mo




Gold-plated B—|/\WKs mode

—0 B 0
F(Eo(t) = J/$Ks) ~T(B{) = J/YKs) — sin 2 sin AMpBAt
['(B (t) — J/YKs) + D(BO(t) — J/¢Ks)

’ L 0' (a) -

S ied ne=1

2 200 -

@ i

g 04F- s 5

= =1 B =

e aE

v i

: 04— . . . e

-5 0 +5 At (ps)




