Cosmology & Particle Physics

John Ellis King's College London & CERN

Plan of Lectures

1 - The Big Picture

- Introduction to Big Bang cosmology
- Dark matter and dark energy
- The role of particle physics in the early Universe
- 2 Particle candidates for dark matter and dark energy
 - The Higgs boson and cosmology
 - Supersymmetry
 - Searching for supersymmetry at the LHC
 - Searches for supersymmetric dark matter

Olbers' Paradox

- Why is the night sky not as bright as the surface of the Sun?
- In an infinite, static Universe, every line of sight would end at the surface of a star
- Absorption does not help (Herschel)
- Finite spherical Universe no help either
- Universe must be finite in time and/or space

• Galaxies are receding from us

Hubble expansion law: galactic redshifts

The expansion of the Universe

Hubble, basketball player

University of Chicago 1909 National Champions

- Galaxies are receding from us

 Hubble expansion law: galactic redshifts
- The Universe was once 3000 smaller, hotter than today

cosmic microwave background radiation emitted from the primordial plasma

Almost the same in different directions →

Small variations discovered by COBE satellite →

The Cosmic Microwave Background Radiation

The Universe is expanding

- Galaxies are receding from us

 Hubble expansion law: galactic redshifts
- The Universe was once 3000 smaller, hotter than today
 - cosmic microwave background radiation
- The Universe was once a billion times smaller, hotter than today
 - light elements cooked in the Big Bang

Making Elements in the Early Universe

- Universe contains about 24% Helium 4 and less Deuterium, Helium 3, Lithium 7
- Could only have been cooked by nuclear reactions in dense early Universe
 - when Universe billion times smaller, hotter than today
- Dependent on amount of matter in Universe not enough to stop expansion, explain galaxies
- Dependent on number of particle types number of different neutrinos measured at accelerators

Abundances of light elements in the Universe Baryon density Ω_bh² 0.01 0.02 0.005 0.03 0.27 ⁴He 0.26 0.25 ← Agree with data Assuming 3 neutrino species → 0.23 10^{-3} D/H|p Theoretical calculations -> He/H ← Agree with data 10^{-5} WMAP Wilkinson Microwave Anisotropy Probe _i/H p 2 10^{-10} 8 9 10 Baryon-to-photon ratio n × Not enough ordinary matter to make the Universe recollapse

A Strange Recipe for a Universe

Dark Energy: 67 ± 6%

The 'Concordance Model' prompted by astrophysics & cosmology

Evidence for Dark Matter

Galaxies rotate more rapidly than allowed by centripetal force due to visible matter

X-ray emitting gas held in place by extra dark matter

Even a 'dark galaxy' without stars

Evidence for Dark Matter from Gravitational Lensing

Light bent by gravitational field of dark matter

Contours of mass density

Direct Evidence for Collisionless Dark Matter

Collision of two galaxies: dark matter lumps pass through

Collision of two galaxies:
gaseous matter stuck in between

The Dark Matter Scaffolding

Could our galactic halo be ordinary matter? Our Halo is not made of Machos = MAssive 100% 100% Halo mass fraction Compact Halo 80% 80% **O**bjects = dead stars 60% 60% or black holes 40%-+40% 20%-10%-< 10 % of our halo 5% 107 105 105 104 103 102 101 Mass of the machos (M_b)

Particle Dark Matter Candidates

A Strange Recipe for a Universe

Dark Energy: 67 ± 6%

The 'Concordance Model' prompted by astrophysics & cosmology

The CMB Power Spectrum

Abundances of light elements in the Universe Baryon density $\Omega_b h^2$ 0.01 0.02 0.005 0.03 0.27 ⁴He 0.26 Helium 0.25 ← Agree with data $Y_{p_{0.24}}$ 0.23 10^{-3} D/H|p Theoretical calculations -> Baryon density Total density He/H required by required by 10-5 **CMB CMB** 10^{-9} /H |p 2 10^{-10} 8 9 10 Wilkinson Microwave Anisotropy Probe Baryon-to-photon ratio $n \times 10$ Not enough ordinary matter to make the Universe recollapse

Direct evidence for dark energy

High-redshift supernovae are standard candles

Universe now accelerating, previously decelerating

not dust, not evolution

Concordance Cosmological Model

Ghirlanda et al 🥻

A Strange Recipe for a Universe

The 'Concordance Model' prompted by astrophysics & cosmology

Open Cosmological Questions

- Where did the matter come from?
 1 proton for every 1,000,000,000 photons
- What is the dark matter?
 Much more than the normal matter
- What is the dark energy?

 Even more than the dark matter
- Why is the Universe so big and old?

 Mechanism for cosmological inflation

Need particle physics to answer these questions

300,000 years

3 minutes

1 micro-second

1 picosecond

Appearance of dark matter?

Formation of atoms

Formation of nuclei

Formation of protons & neutrons

Appearance of mass?

BANG!

of matter?

The Very Early Universe

- Size: $a \rightarrow zero$
- Age: $t \rightarrow zero$
- Temperature: T → large

$$T \sim 1/a, t \sim 1/T^2$$

- Energies: E ~ T
- Rough magnitudes:

T ~ 10,000,000,000 degrees

E ~ 1 MeV ~ mass of electron

t ~ 1 second

Need particle physics to describe earlier history

Mathematical Description

- Large-scale universe ~ isotropic & homogeneous
- Only possible form of metric (Robertson-Walker)

$$ds^{2} = dt^{2} - R^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} \left(d\theta^{2} + \sin^{2}\theta \, d\phi^{2} \right) \right]$$

- Redshift: $z \equiv \frac{\nu_1 \nu_2}{\nu_2} \simeq \frac{v_{12}}{c}$
- Related to expansion rate:

$$\frac{v_{12}}{c} = \dot{R} \, \delta r = \frac{\dot{R}}{R} \, \delta t = \frac{\delta R}{R} = \frac{R_2 - R_1}{R_1} \qquad 1 + z = \frac{\nu_1}{\nu_2} = \frac{R_2}{R_1}$$

No Einstein yet!

General-Relativistic Description

• Einstein's equations:

$$\mathcal{R}_{\mu\nu} - \frac{1}{2}g_{\mu\nu}\mathcal{R} = 8\pi G_{\mathrm{N}}T_{\mu\nu} + \Lambda g_{\mu\nu}$$

- Cosmological constant Λ part of $T_{\mu\nu}$
- Treat matter & radiation as fluid:

$$T_{\mu\nu} = -pg_{\mu\nu} + (p+\rho)u_{\mu}u_{\nu} \qquad \dot{\rho} = -3H(\rho+p)$$

• Friedman-Lemaître equations:

$$H^2 \equiv \left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G_{\rm N} \rho}{3} - \frac{k}{R^2} + \frac{\Lambda}{3}$$
 $\frac{\ddot{R}}{R} = \frac{\Lambda}{3} - \frac{4\pi G_{\rm N}}{3} \ (\rho + 3p)$

Relativistic Particles

• Relativistic degrees of freedom:

$$\rho = \left(\sum_{B} g_{B} + \frac{7}{8} \sum_{F} g_{F}\right) \frac{\pi^{2}}{30} T^{4} \equiv \frac{\pi^{2}}{30} N(T) T^{4}$$

- Degrees of freedom in Standard Model:
- Expansion rate: $R(t) \propto t^{1/2}$; H = 1/2t

Temperature	New Particles	4N(T)	100
$T < m_e$	γ 's + ν 's	29	
$m_e < T < m_\mu$	e^{\pm}	43	80
$m_{\mu} < T < m_{\pi}$	μ^{\pm}	57	
$m_{\pi} < T < {T_c}^{\dagger}$	π 's	69	60
$T_c < T < m_{\rm strange}$	π 's + u , \bar{u} , d , \bar{d} + gluons	205	N(T)
$m_s < T < m_{ m charm}$	$s, ar{s}$	247	40 - / /
$m_c < T < m_{\tau}$	c, \bar{c}	289	
$m_{\tau} < T < m_{ m bottom}$	$ au^\pm$	303	20
$m_b < T < m_{ m W,Z}$	b, \overline{b}	345	
$m_{W,Z} < T < m_{ m Higgs}$	W^{\pm}, Z	381	0
$m_H < T < m_{ m top}$	H^0	385	1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
$m_t < T$	$t,ar{t}$	427	Log(T/MeV)

How Flat is the Universe?

Measure density relative to critical value:

$$\Omega_{\rm tot} = \rho/\rho_c$$

Curvature: $k/R^2 = H^2(\Omega_{\text{tot}} - 1)$

where critical density
$$\rho_c \equiv \frac{3H^2}{8\pi\,G_{\rm N}} = 1.88\times 10^{-26}\,h^2~{\rm kg~m^{-3}}$$

$$= 1.05\times 10^{-5}\,h^2~{\rm GeV~cm^{-3}}$$

- And Hubble expansion rate: $H \equiv 100 h \text{ km s}^{-1} \text{ Mpc}^{-1}$
- Exponential expansion if Λ dominates:

$$R(t) \propto e^{\sqrt{\Lambda/3}t}$$

Age of the Universe

• Integrating Hubble expansion rate:

$$H_0 t_0 = \int_0^\infty \frac{dz}{(1+z)H(z)}$$

$$= \int_0^\infty \frac{dz}{(1+z) [(1+z)^2 (1+\Omega_{\rm m} z) - z(2+z)\Omega_{\rm v}]^{1/2}}$$

• Approximate solution:

$$H_0 t_0 \simeq \frac{2}{3} (0.7 \Omega_{\rm m} + 0.3 - 0.3 \Omega_{\rm v})^{-0.3}$$

• Estimated age: 13.7 billion years

Scalar Fields & Inflation

Energy-momentum tensor for scalar field:

$$T_{\mu\nu} = \partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}g_{\mu\nu}\partial_{\rho}\phi\partial^{\rho}\phi - g_{\mu\nu}V(\phi)$$

• Density & pressure:
$$\rho = \frac{1}{2}\dot{\phi}^2 + \frac{1}{2}R^{-2}(t)(\nabla\phi)^2 + V(\phi)$$

$$p = \frac{1}{2}\dot{\phi}^2 - \frac{1}{6}R^{-2}(t)(\nabla\phi)^2 - V(\phi) ,$$

- Evolution of scalar field: $\ddot{\phi} + 3H\dot{\phi} = -\partial V/\partial \phi$
- Slow-roll parameters: $\epsilon \equiv \frac{M_{\rm P}^2}{16\pi} (\frac{V'}{V})^2$ $\eta \equiv \frac{M_{\rm P}^2}{8\pi} (\frac{V''}{V})$
- If these are small, near-exponential expansion:

$$R(t) \propto e^{\sqrt{\Lambda/3}t} : \Lambda = V(\phi)$$

Density Perturbations

- Generated by quantum fluctuations in inflaton field
- Density perturbations:

$$\delta(\mathbf{x}) \equiv \frac{\rho(\mathbf{x}) - \langle \rho \rangle}{\langle \rho \rangle} \delta(\mathbf{x}) = \sum \delta_{\mathbf{k}} e^{-i\mathbf{k}\cdot\mathbf{x}}$$

• Power spectrum:

$$\langle \delta^2 \rangle = \sum |\delta_{\mathbf{k}}|^2 \equiv \sum P(k)$$

- Evolution depends on equation of state
- Measured in CMB, galaxy distributions

Origin of Structures in Universe

Small primordial fluctuations: one part in 10⁵

Gravitational instability

Matter falls into
the overdense regions

Convert into matter with varying density

Structures observed in the Universe

Galaxies → Clusters → smooth at largest scales

Simulation of Cold Dark Matter

Initially quite homogeneous: gravity → structures form → today

- Filaments of dark matter,
- Clusters of galaxies at nodes

Structures in Universe vs Concordance Model

Flat Universe:

$$\Omega_{\text{Tot}} = 1$$
,

Cold dark matter:

$$\Omega_{\rm CDM} \sim 0.25$$
,

No hot dark matter,

Few baryons:

$$\Omega_{\rm b} \sim 0.05$$
,

Dark energy:

$$\Omega_{\Lambda} \sim 0.7$$

