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Foreword – Reference material

 Impossible to cover all the aspects of particle 
detection!

 This lecture is focused on high energy particle 
detectors

 Many excellent courses and textbooks are available. 
These lectures are mainly based on : 

 L. Serin (LAL) Lectures given at the TransEuropean HEP School 
2008 (thanks Laurent!)

 F. Sauli  IEEE NSS/MIC Norfolk  2002
 C. Joram, L Ropelewski Lectures at the CERN Academic Training 

Program 2004/2005 (many slides borrowed from this series)
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•Reference books

 C. Grupen, Particle Detectors, Cambridge University 
Press, 1996

 K. Kleinknecht, Detectors for particle radiation , 2nd 
edition, Cambridge Univ. Press, 1998

 W. Blum, L. Rolandi, Particle Detection with Drift 
Chambers, Springer, 1994

 F. Sauli Principles of operation of multiwire proportional 
and drift chambers CERN 77-09
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Outline

 Introduction and examples
 Time of flight
 Charged particle interaction with matter
 Ionization measurement
 Cherenkov detectors
 Transition radiation 
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Definitions

 Suppose the detector response to a particle i is F=f(i,p)
 And it is different from f(j,p)
 i is your signal and j the background 
 Then your detector is capable of PID
 You can place a cut on F < Fcut
 Define an efficiency ε(i) = Int (-inf, Fcut)f(i,p)/tot
 A misidentification rate  misid(j->i)= Int (-inf, 

Fcut)f(j,p)/tot
 A rejection factor R=ε(i)/misid(j->i)
 A separation or resolving power S= (<f(i,p)>-<f(j,p)>)/σ
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Basis of particle detectors

Particle interaction in 
matter

Detector is set up in order  
to collect the  “message” left 
by the particle ... 

and to produce an 
electric signal which is 
recorded

Signal is processed to obtain information 
about the particle: position, time, 
momentum, energy, mass ...
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Gas detectors: steps

0 100 200 300 400 500

q(t)

300 ns

100 ns

50 ns

Ionization Transport: drift and 
diffusion

Multiplication

Signal formation
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Detection methods and problems

The pristine physics response is altered by thresholds, 
noise, non-linearity, pile-up, digitization etc
The devil is in the details !
All these interesting effects enter into the efficiencies, 
misid etc
We can take them into account with :
 Detailed MC (understand the physics of your 

detector!)
 Beam tests
 Control samples
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A slice of CMS
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Cross section of a modern HEP exp

Charged particles

Electrons, photons

Hadrons

Muons
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Typical problems in particle identification

 K-pion : time of flight, ionization, Cherenkov

 electron-pion : E/p, shower shape

 Muon-pion: penetration through dense and thick 

materials    
 It is usual to combine different detectors to achieve 

a better separation
 This has also the advantage that purity and 

efficiency can be measured with the data



FAPPS11,  
October 2011  Marco Zito 12

PID example : DELPHI charmless B decay
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Examples

 Reduction in background using identification 
LHCB RICH BABAR DIRC
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Time of flight (ToF)
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Typical resolution o(100) ps
Advantage of ToF: simple, optimum at very 
low momenta
Complementary to other techniques
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Example ToF and Ionization: NA61
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An intriguing ToF measurement

OPERA on CNGS neutrino 
beam
Baseline 730 km (CERN to 
Gran Sasso
~ 2 ms total flight time
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Interaction of charged particles

 For a charged particle traversing a layer of material, three 
processes can occur
 Ionization of atoms
 Cherenkov radiation
 Transition radiation

=v k cosc h≪m0 c
2


2
=

k2 c2




v
c
cos c=1

Energy momentum conservation

Dispersion relation

Consider a particle of mass m
0
, velocity v 

emitting a photon (ω,k) in a material of 
refractive index n and dielectric constant 

=1 i2

n=ℜ1

Θ angle between the photon and the incoming particle
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Interaction of charged particles


v
c
cos c=1

Below  the excitation energies 
of the material ε is real and > 1. 
Real Cherenkov photons for 

From 2 eV to 5 keV, ε is  a complex 
number, virtual photons are exchanged, 
ionization and excitation

Above 5 keV, real photons are 
emitted if there are 
discontinuities in the material 
=> transition radiation

~keV~eV

v
c



Allison, Wright 1983
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Understanding Bethe Bloch

 Consider a single collision with one electron
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2 c2=2.8 fm

N e∝
Z
A

N A
The number of collisions is given by 
the electron density in the medium

To get the total energy loss we need to integrate this expression 
for all impact parameter b, or equivalently for all energy loss from 
the ionization potential to the maximum kinetic energy transfer to 
the electron E_max
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Energy loss for heavy particles : Bethe-Bloch

Average energy loss for a particle of charge z in a 
material of atomic number A/Z

dE
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H. Bethe Ann. D Phys. 5 (1930) 325

N_A Avogadro number

r_e classical electron radius

I mean excitation potential

 δ density effect correction

C/Z shell correction

Precise at the % level
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Energy loss: examples
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MIP: Minimum Ionizing Particle
Length unit: dx = ρ (g/cm**3) ds (cm) in g/cm**2 because energy loss per 
area density is almost independent of the material 
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Energy loss

Bethe Bloch describes the average 
energy loss. For a thin absorber the 
energy loss has a very asymmetric 
(long tail) shape, described by a 
Straggling function 

The energy loss is larger at small β
(energy), i.e end of the path in matter
Bragg peak
Not used in High Energy physics but
basis of medical application,
hadrontherapy

NB: the mean value is not so useful to 
characterize this distribution in this case
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For thick absorbers, due to 
the central limit theorem, 
the straggling function 
approaches a Gaussian

Straggling functions in thin absorbers

For thin absorbers, the 
atomic structure plays a 
role and the struggling 
function can be computed 
(but no analytical form)

Allison Cobb 1980
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Ionization loss muons 150 MeV

 0.97 cm Argon T2K TPC, dashed PAI model
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PID with ionization measurements

pion/kaon separation requires resolution 5%
Several overlap : ambiguity need to be resolved 
using another detector
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PID with ionization measurements

 Ionization measurements are available in most HEP 
experiments because they are related to tracking 
detectors

 Many samples along a track, usually 10-100 range
 However each measurement is sampled from a 

broad distribution with large tails
 How can we turn many low-quality measurements 

into a precision identification ?
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An example: PID with the T2K TPC
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Principle of the TPC

gas

detector
E

Charged Particle

cathode

Time Projection Chamber

3D detector!!
2 coordinates on read out 
plane+drift time

B
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TPC Parameters

 Drift: 90 cm
 E drift 200 V/cm → cathode ~ 20 kV
 B 0.2 T
 Gas: Ar-CF4(3%)-isobutane(2%)
 Drift velocity ~7cm/μs
 Transverse diffusion 240 μm/sqrt(cm)
 MM gain ~ 1000
 Pad size 9.7x6.7 mm
 N channels 120 k
 Required resolutions
 σ(p)/p < 10 % at 1 GeV/c
 σ(dE/dx) <~ 10%
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TPC signals

On each pad: sample the signal for 
the whole drift time. In our case 
every 30 ns for 15 μs (511 samples)
Determine the drift coordinate from 
the signal peak

On the readout plane: determine the 
position of the track from the height of 
the signals on two adjacent pads

Simple minded: do barycenter
More sophisticated: find fitting gaussian
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Neutrino interaction with the TPC
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For each track we have 72 ionization samples

Classify  them in increasing order

Keep only the lower 70%

Compute the mean C
T
 of the remaining samples
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Misidentification rate
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Usual jargon to be avoided

 dE/dx → ionization measurement : we are not 
measuring average energy loss but the most 
probable value

 Bethe-Bloch : this refers to the average energy loss, 
the most probable value vs p follows a different 
functional law (usually no a priori analytic form)

 Landau distribution, Landau tails → straggling 
function. The Landau distribution is not a good 
parameterization for the most common straggling 
functions in gas detectors
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Identification with ionization measurements

 Peculiar detector response
 But many measurements
 Can be combined for a powerful PID
 With features to be well understood 
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Cherenkov radiation
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Interaction of charged particles


v
c
cos c=1

Below  the excitation energies 
of the material ε is real and > 1. 
Real Cherenkov photons for 

From 2 eV to 5 keV, ε is  a complex 
number, virtual photons are exchanged, 
ionization and excitation

Above 5 keV, real photons are 
emitted if there are 
discontinuities in the material 
=> transition radiation

~keV~eV

v
c



Allison, Wright 1983
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Cherenkov radiation
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Cherenkov radiation

Cherenkov radiation is emitted when a charged  particle passes through a dielectric 
medium  with velocity β>1/n
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Cherenkov radiation
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Threshold Cherenkov detectors

Commonly used also on beam line instrumentation
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Ring Imaging Cherenkov detectors (RICH)
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RICH performance

Determination of θ
c
 requires :

•Good resolution on the detected photon
•Thin radiator (or focusing system)
•Accuracy on track direction and momentum
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Questions?
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Neutrino events in SK
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Transition radiation 
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Transition radiation 
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Transition radiation 
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ATLAS TRT
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ALICE TRD

Drift chamber with Xe/CO2 (85:15)
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ALICE TRD performance
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PID summary

 Muons: low energy deposition in calorimeter. High 

penetration

 Electrons: Shower in calorimeter. E/p

 e/μ/π/K/p Ionization, ToF, Cherenkov, Transition 

Radiation 
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Energy loss: straggling functions
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