Link to the dipole models

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A phenomenological study of helicity amplitudes of high energy exclusive leptoproduction of the ρ meson

Adrien Besse

Laboratoire de Physique Théorique d'Orsay - Soltan Institute for Nuclear Studies

GDR-PH-QCD Orsay, October 21th 2011

Introduction	Phenomenological model for helicity amplitudes	Link to the dipole models	Conclusion II
Outline			

• A phenomenological model of the helicity amplitudes of high energy exclusive leptoproduction of the ρ meson

PhysRevD.84.054004

in collaboration with I. V. Anikin (JINR, Dubna), D. Yu. Ivanov (SIM, Novossibirsk), B. Pire (CPhT, Palaiseau), L. Szymanowski (SINS, Warsaw) and S. Wallon (LPT, Orsay)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Impact factor $\gamma^* \rightarrow \rho$ up to twist 3 - link to colour dipole model

in collaboration with L. Szymanowski (SINS, Warsaw) and S. Wallon (LPT, Orsay)

Introduction	Phenomenological model for helicity amplitudes	Link to the dipole models	Conclusion II
Introductio Experimental dat	n a of helicity amplitudes at hiah energy		

- Helicity amplitudes $T_{\lambda_{\rho}\lambda_{\gamma}}: \gamma^*_{\lambda_{\gamma}} + p \to \rho_{\lambda_{\rho}} + p$
- H1 and ZEUS data for Helicity Amplitudes at HERA:

Kinematics

- High energy in the center of mass $30 \, GeV < W < 180 \, GeV$
- Photon Virtuality $2.5\,GeV^2 < Q^2 < 60\,GeV^2$
- $\bullet \ |t| < 1 \, GeV^2$

$$\Rightarrow s_{\gamma^* p} = W^2 >> Q^2 >> \Lambda^2_{QCD}$$

Introduction	Phenomenological model for helicity amplitudes	Link to the dipole models	Conclusion II
Introductio	n		

• Perturbative Regge Limit :

 $\label{eq:ReggeLimit} \begin{array}{l} {\rm Regge\ Limit}: s = W^2 >> Q^2, \left| t \right|, M^2_{\rm hadron} \\ {\rm Hard\ scale}: Q >> \Lambda_{QCD} \end{array}$

• k_T factorisation

Amplitudes with gluons exchange in t-channel dominate at large s ($s = W^2$)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction	Phenomenological model for helicity amplitudes	Link to the dipole models	Conclusion II
Introductio	N Droach		

Impact factors $\Phi^{\gamma^* \to \rho}$ and $\Phi^{P \to P}$

- $\Phi^{\gamma^*
 ightarrow
 ho}$ Light-Cone Collinear factorisation
 - - Twist t : Impact factor behaves as $1/Q^{t-1}$
 - $T_{00}\equiv\gamma_L^*
 ightarrow
 ho_L$ impact factor : Dominant term at twist 2 $\equiv 1/Q$
 - $T_{11} \equiv \gamma_T^* \rightarrow \rho_T$ impact factor : Dominant term at twist $3 \equiv 1/Q^2$ Recently computed at $t = t_{min} \approx 0$ Nucl. Phys. B **828** (2010) 1-68. by Anikin et al.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 ${\ }$ ${\ }$ Phenomenological model for $\Phi^{P \rightarrow P}$

	Phenomenological model for helicity amplitudes •••••••	Link to the dipole models	Conclusion II
Collinear fa Light-Cone Colline	ctorization ear approach		

Collinear factorization of 2-body and 3-body contributions

・ロト ・ 一 ト ・ 日 ト ・ 日 ト

• Parametrization of Soft parts $S_{q\bar{q}}, \partial_{\perp}S_{q\bar{q}}, S_{q\bar{q}g}$

- \Rightarrow 5 2-body DAs $\{\varphi_1, \varphi_A, \varphi_3, \varphi_{1T}, \varphi_{AT}\}$
- \Rightarrow 2 3-body DAs $\{B(y_1, y_2), D(y_1, y_2)\}$
- Relations between DAs : Equation of motion and n-independence \Rightarrow

3 independent DAs : $\{\varphi_1, B(y_1, y_2), D(y_1, y_2)\}$

	Phenomenological model for helicity amplitudes 0●000000	Link to the dipole models	Conclusion II
Collinear Wandzurg-Wil	r factorization		

 $\bullet\,$ Solution in the Wandzura-Wilczek Approximation (WW) $\equiv\,$ Only 2-body contributions

 $\varphi_{1} \Rightarrow \{\varphi_{3}^{WW}(y), \varphi_{A}^{WW}(y), \varphi_{1T}^{WW}(y), \varphi_{AT}^{WW}(y)\}$

• Genuine solutions

 $\{B(y_1,y_2),D(y_1,y_2)\} \Rightarrow \{\varphi_3^{gen}(y),\varphi_A^{gen}(y),\varphi_{1T}^{gen}(y),\varphi_{AT}^{gen}(y)\}$

• Evolution of the DAs P. Ball, V.M. Braun, Y. Koike, K. Tanaka

$$\begin{aligned} \varphi_1(y,\mu^2) &= 6y\bar{y}(1+a_2(\mu^2)\frac{3}{2}(5(y-\bar{y})^2-1)) \stackrel{\mu^2\to\infty}{\longrightarrow} 6y\bar{y} \\ B(y_1,y_2;\mu^2) &= -5040y_1\bar{y_2}(y_1-\bar{y_2})(y_2-y_1) \\ D(y_1,y_2;\mu^2) &= -360y_1\bar{y_2}(y_2-y_1)(1+\frac{\omega_{\{1,0\}}^A(\mu^2)}{2}(7(y_2-y_1)-3)) \end{aligned}$$

with $\mu^2 \approx Q^2$ the collinear factorisation scale

Int		\sim	110	tio	
	15	vu	uc	пo	

Phenomenological model for helicity amplitudes

Link to the dipole models

~

Collinear factorisation DAs dependence on μ^2

•
$$M(y_1, y_2) = \zeta_{\rho}^V(\mu^2) B(y_1, y_2; \mu^2) - \zeta_{\rho}^A(\mu^2) D(y_1, y_2; \mu^2) \stackrel{\mu^2 \to \infty}{\longrightarrow} 0$$

 $S(y_1, y_2) = \zeta_{\rho}^V(\mu^2) B(y_1, y_2; \mu^2) + \zeta_{\rho}^A(\mu^2) D(y_1, y_2; \mu^2) \stackrel{\mu^2 \to \infty}{\longrightarrow} 0$

Introduction

Phenomenological model for helicity amplitudes

Link to the dipole models

Conclusion II

Ratios of Helicity Amplitudes A model for the proton impact factor

•
$$T_{\lambda_{\rho}\lambda_{\gamma}}(Q,M) = is \int \frac{d^2\underline{k}}{(2\pi)^2} \frac{1}{(\underline{k}^2)^2} \Phi^{P \to P}(\underline{k}; M^2) \Phi^{\gamma^*(\lambda_{\gamma}) \to \rho(\lambda_{\rho})}(\underline{k}; Q^2)$$

 \bullet Phenomenological Model for $\Phi^{P \to P}$

$$\Phi^{P \to P}(\underline{k}; M^2) \propto \left[\frac{1}{M^2} - \frac{1}{M^2 + \underline{k}^2}\right]$$
 J.F Gunion, D.E Soper

• $\gamma_L^* \rightarrow \rho_L$ helicity amplitude:

$$T_{00} \propto \frac{is}{(2\pi)} \int_{\lambda^2}^{\infty} d\underline{k}^2 \frac{1}{(\underline{k}^2)^2} \left(\frac{1}{M^2} - \frac{1}{\underline{k}^2 + M^2} \right)$$
$$\times \frac{1}{Q} \int_0^1 dy \, \varphi_1(y, \mu^2) \frac{\underline{k}^2}{\underline{k}^2 + y\bar{y}Q^2}$$

• The WW contribution:

	Phenomenological model for helicity amplitudes ○○○●●○○	Link to the dipole models	Conclusion II
Ratios o ⁻ Comparison	f Helicity Amplitudes with H1 data : T_{11}/T_{00}		

• Genuine and Wandzura-Wilczek Contributions at $M = 1 \, GeV$ T_{11}

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

In	trodu	int	ion	
	noau	JUI	1011	

Phenomenological model for helicity amplitudes

Link to the dipole models

< ロ > < 同 > < 回 > < 回 >

э

Conclusion II

Ratios of Helicity Amplitudes Dependence on parameters M and λ

 T_{11} T_{00} 1.2 r $\lambda = 0 \text{ GeV}$ M = 1 GeV1.0 $\lambda = 0.2 \text{ GeV}$ $---\lambda = 0.4 \text{ GeV}$ 0.8 $\cdot \cdot \lambda = 1 \text{ GeV}$ H1 0.6 0.4 0.2 O^2 0 5 10 15 20 25

Phenomenological model for helicity amplitudes	Link to the dipole models	
00000000		

Ratios of Helicity Amplitudes Comparison with H1 data : T_{01}/T_{00}

• T_{01}/T_{00} at $M = 1 \, GeV$, Dependence on μ^2 at $M = 1 \, GeV$:

◆ロト ◆課 ▶ ◆語 ▶ ◆語 ▶ ○語 ○ の久(で)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusion I : Perspectives for $\Phi^{\gamma_T^* \to \rho_T}$

- Good agreement with Experimental data
 - reasonable values of $M \approx M_p$ and $\lambda \approx 0 \, GeV$
 - weak sensitivity in the parameters M and λ

- Perspectives :
 - $\bullet\,$ Extend the kinematic to $t \neq t_{min} \Rightarrow$ access to all spin density matrix elements.
 - Link with the Dipole model and implementation of saturation effects

	Phenomenological model for helicity amplitudes	Link to the dipole models ●00000	Conclusion II
Dipole Moc	lels ture		

• Factorization of a high energy scattering amplitude into:

- Initial Ψ_i and final Ψ_f states wave functions of projectiles
- Universal scattering amplitude $\mathcal{N} \equiv \mathcal{N}_{\text{dipole-target}}$
- Dipole models are consistent with LO Collinear approximation but are they still consistent with collinear factorization at higher twist order?

					~	
	U	ч	u		U	

Phenomenological model for helicity amplitudes

Link to the dipole models

Dipole Models The $\gamma^* \rightarrow \rho$ impact factor in a dipole model

• Dipole representation at lowest Fock state ($q\bar{q}$ pair)

• In the dipole model representation, the amplitude for high energy electroproduction of the ρ meson at t = 0 reads:

$$\mathcal{A} = is \int d^2 \underline{x} \int dy \bar{\Psi}^{\rho \lambda_{\rho}}(y, \underline{x}) \mathcal{N}(x_{Bj}, \underline{x}) \Psi^{\gamma^* \lambda_{\gamma}}(y, \underline{x})$$

(from Bartels, Golec-Biernat, Peters) with

$$\mathcal{N}(x_{Bj},\underline{x}) \propto \alpha_s \frac{\delta^{ab}}{N_c} \int \frac{d^2\underline{k}}{(\underline{k}^2)^2} (1 - e^{i\underline{k}\cdot\underline{x}}) (1 - e^{-i\underline{k}\cdot\underline{x}}) f(x_{Bj},\underline{x})$$

	Phenomenological model for helicity amplitudes 0000000	Link to the dipole models 00●000	Conclusion II
Dipole M Fourrier transfo			

Impact factor in transverse coordinate space:

$$\begin{split} \Phi_{2body}^{\gamma^* \to \rho} &= \int d^4 \ell \, H(\ell) S(\ell) = -\frac{1}{4} \int d^4 \ell H^{\Gamma}(\ell) S_{\Gamma}(\ell) \\ &= -\frac{1}{4} \int dy \int d^2 \ell_{\perp} \int \frac{d^2 x_{\perp}}{2\pi} e^{-i\ell_{\perp} \cdot x_{\perp}} \tilde{H}^{\Gamma}(y, x_{\perp}) \\ &\int \frac{d^2 z_{\perp}}{2\pi} e^{-i\ell_{\perp} \cdot z_{\perp}} \int \frac{d\lambda}{2\pi} e^{-i\lambda y} \langle \rho | \bar{\psi}(\lambda n + z_{\perp}) \Gamma \, \psi(0) | 0 \rangle \end{split}$$

• Hard parts in transverse coordinate space :

▲□▶▲□▶▲□▶▲□▶ □ のQで

	Phenomenological model for helicity amplitudes	Link to the dipole models 000€00	Conclusion II			
Dipole Models						

Collinear Approximation up to twist 3 $\Rightarrow e^{-i\ell_{\perp}\cdot x_{\perp}}\approx 1-i\ell_{\perp}\cdot x_{\perp}$

• "1" \Rightarrow

$$\begin{aligned} &-\frac{1}{4}\int dy\int \frac{d^2x_{\perp}}{2\pi}\tilde{H}^{\Gamma}(y,x_{\perp})\int \frac{d\lambda}{2\pi}e^{-i\lambda y}\langle\rho|\bar{\psi}(\lambda n)\Gamma\,\psi(0)|0\rangle\\ \bullet \ "-i\ell_{\perp}\cdot x_{\perp}" \Rightarrow \\ &-\frac{1}{4}\int dy\int \frac{d^2x_{\perp}}{2\pi}x_{\perp}^{\alpha}\tilde{H}^{\Gamma}(y,x_{\perp})\int \frac{d\lambda}{2\pi}e^{-i\lambda y}\langle\rho|\bar{\psi}(\lambda n)\;\partial_{\alpha^{\perp}}^{\leftrightarrow}\;\Gamma\,\psi(0)|0\rangle \end{aligned}$$

	Phenomenological model for helicity amplitudes 00000000	Link to the dipole models 0000●0	Conclusion II			
Dipole Models						

Hard parts in coordinate space:

• $\Gamma \equiv \gamma^{\mu}$

$$\begin{split} \tilde{H}^{\gamma^{\mu}}(y,\underline{x}) &= -4\frac{2\pi e g^2}{\sqrt{2s}} \frac{\delta^{ab}}{2N_c} \{ y\bar{y}sK_0(\mu |\underline{x}|)e^{\mu}_{\gamma_T} \\ &- (y-\bar{y})i\mu \frac{e_{\gamma_T} \cdot \underline{x}}{|\underline{x}|} K_1(\mu |\underline{x}|) \left((1-e^{i\underline{k}\cdot\underline{x}})(1-e^{-i\underline{k}\cdot\underline{x}}) - 1 \right) p_2^{\mu} \} \end{split}$$

• Hard part $\Gamma \equiv \gamma_5 \gamma^{\mu}$

$$\begin{split} \tilde{H}^{\gamma_{5}\gamma^{\mu}}(y,\underline{x}) &= 4i\frac{2\pi eg^{2}}{\sqrt{2s}}\frac{\delta^{ab}}{2N_{c}}\varepsilon^{\mu\nu\rho\sigma}\{-y\bar{y}K_{0}(\mu|\underline{x}|)(e_{\gamma_{T}\nu}p_{1\rho}p_{2\sigma} + p_{2\nu}p_{1\rho}e_{\gamma_{T}\sigma})\\ &-i\mu K_{1}(\mu|\underline{x}|)\left((1-e^{i\underline{k}\cdot\underline{x}})(1-e^{-i\underline{k}\cdot\underline{x}}) - 1\right)(ye_{\gamma_{T}\nu}\frac{x_{\perp\rho}}{|\underline{x}|}p_{2\sigma} - \bar{y}p_{2\nu}\frac{x_{\perp\rho}}{|\underline{x}|}p_{1\sigma})\}\end{split}$$

• Equations of motion:

$$\operatorname{Termes} \times (1 - e^{i\underline{k} \cdot \underline{x}})(1 - e^{-i\underline{k} \cdot \underline{x}}) + \operatorname{Termes} \times \underbrace{2y\overline{y}\varphi_3(y) + (y - \overline{y})\varphi_{1T}(y) + \varphi_{AT}(y)}_{=0}$$

	Phenomenological model for helicity amplitudes	Link to the dipole models	Conclusion II
Dipole Mod	Iels of the $\gamma^* \rightarrow \rho$ impact factor		

Twist 3, 2-body impact factors:

• Non-flip part:

$$\Phi_{nf} = \frac{1}{4} \int dy \int \frac{d^2 \underline{x}}{2\pi} \frac{e}{\sqrt{2}} \mu |\underline{x}| K_1(\mu |\underline{x}|) g^2 \delta^{ab} (1 - e^{i\underline{k} \cdot \underline{x}}) (1 - e^{-i\underline{k} \cdot \underline{x}}) \frac{m_\rho f_\rho}{2N_c} \{ (y - \bar{y}) \varphi_{1T}(y) + \varphi_{AT}(y) \}$$

• Flip part:

$$\Phi_{f} = \frac{1}{2} \int dy \int \frac{d^{2}x}{2\pi} \frac{e}{\sqrt{2}} \mu |\underline{x}| K_{1}(\mu |\underline{x}|) g^{2} \delta^{ab} (1 - e^{i\underline{k} \cdot \underline{x}}) (1 - e^{-i\underline{k} \cdot \underline{x}}) \frac{m_{\rho} f_{\rho}}{2N_{c}} \{ (y - \bar{y}) \varphi_{1T}(y) - \varphi_{AT}(y) \}$$

$$\gamma_T^* + \text{Equations of motion} = \sqrt{\frac{\Psi^{\gamma_T^*}}{2}} + \frac{\Psi^{\rho_T} \rho}{2}$$

- Agreement between the higher twist computation in the Wandzura-Wilczek approximation and the dipole representation.
- Dipole factors appear in the large N_c limit for the 3-body impact factor:

 Improvement of the phenomenological model by taking into account saturation effects in the previous phenomenological model

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@