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List of difficult points

continuum limit a→ 0

Infinite volume limit
Zero temperature limit (excited state mixing)
Chiral extrapolation mπ → 140MeV

Disconnected contractions



Continuum theory

LQCD = ψ̄(iγµDµ −M)ψ − 1

4
F aµνF

µν
a

fermions part

Dµ = ∂µ + igAaµ
λa
2

Yang-Mills part

F aµν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν

LQCD invariant under local gauge transformations

ψ(x) → G(x)ψ(x),

Aµ(x) → G(x)(Aµ(x)− ig∂)G(x)−1

any approximation should respect this invariance because
it is the source of the interactions.
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Discrétization

4D lattice
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a

ψx

Uµ(y) ∈ SU(3)

Uµ(x) = eigaAµ(x)

Volume : (243 × 48) up to (483 × 96)

Lattice spacing : a ' 0.05÷ 0.1 fm

If SQCD is discretization of the QCD action

〈O[U,ψ, ψ̄]〉 =
1

Z

∫ ∏
sommets

[dψ̄][dψ]
∏
liens

[dU ]O[U,ψ, ψ̄]e−SQCD[U,ψ,ψ̄]



Principe of lattice calculation

A typical corrélator

〈O(t+ τ)O(t)〉, τ > 0

can be evaluated on the lattice as

〈O(t+ τ)O(t)〉 =
1

Z

∫
[dψdψ̄dU ]O(t+ τ)O(t)e−S[U,ψ,ψ̄]

on the other hand (if one work in Euclidian space-time)

〈O(t+ τ)O(t)〉 = 〈0|Oe−HτO|0〉
=

∑
n

|〈0|O|n〉|2e−Mnτ

More generally the physical information is extracted from
the time dependance of some correlator.



Fermion integration and Monte Carlo

Fermions are not ordinary numbers. They cant be integrated
numerically but they can be integrated analytically :

〈O[U,ψ, ψ̄]〉 =
1

Z

∫ ∏
sommets

[dψ̄][dψ]
∏
liens

[dU ] e−SQCD[U,ψ,ψ̄] O[U,ψ, ψ̄]

=
1

Z

∫ ∏
liens

[dU ] detD[U ]e−Sg [U ]

×
∑

all contractions in O

[
propagateurs

]
U

detD[U ] is evaluated with pseudo-fermions method
U is sampled with the hybrid Monte Carlo method
(molecular dynamics)
propagators are evaluated by inverting Dirac equation, a
large sparse linear system



Example

This operator 〈q3(y)q̄4(y) q1(x)q̄2(x)〉 involves contractions

like this

y
3

4

2

1
x

4

xy
2

1

3

comment
Disconnected contractions are one of the hard points
(cost).
Generally neglected.
Do not contribute to u− d combination



Gluon action

Plaquette

U2

U1

U4

U3

xµ

ν U(x, µ, ν) = U4U3U2U1

Wilson action(1974)

Sg =
∑

Plaquettes

β

[
1− 1

3
Re Tr[U(x, µ, ν)]

]

with β = 6/g2 then

Sg −−−−→
a→0

SYM =
1

4

∫
d4xF aµνF

µν
a



Fermion action and active GPDs groups

Discretization

discretize ψ̄(iγµDµ −M)ψ in a consistent way
several solutions according to chiral symmetry
implementation

chiral symmetry exists at finite lattice spacing :
Ginsparg-Wilson, domain wall, overlap
partial chiral symmetry exists at finite lattice spacing :
staggered quarks
chiral symmetry exists only at zero lattice spacing :
Wilson, Wilson clover, twisted mass

GPDs active groups

LHPC : staggered quarks in the sea, domain wall in
valence arXiv :1001.3620
QCDSF : Wilson clover arXiv :1101.2326v1
ETMC : twisted mass arXiv :1104.1600v1



Continuum limit

what we compute is (for instance) a ∗M = f(g) because
there is no mass scale in the action

g must be a function of a in order that M =
f(g)

a
be finite

when a→ 0

Asymptotic freedom tells that g(a)→ 0 when a→ 0

so the continuum theory is at β =
6

g2
→∞ .

Continuum limit
Observables must be independent of β when β →∞ .



GPDs

   Soft   GPD

Hard,  calculable in perturbation

factorisation scale

N N

quark or gluon

generic GPD is

F (x, ξ, µ2 = Q2) =

∫
dλeixλ 〈N(p′)|q̄(−λn/2)[· · · ]q(λn/2)|N(p)〉

where n is a light-like vector along p+ p′.



GPD ∼
∫
dλeixλ 〈N(p′)|q̄(−λn/2)[· · · ]q(λn/2)|N(p)〉 (1)

Space-time is Euclidian : n2 = 0⇒ n = 0.
Operators separated by light-like distance cannot be computed
directly on the lattice.

Way out

Expand q(±λn/2) in power serie. Operators to compute on the
lattice are then (∂ → D for gauge inv.)

Oµν··· = q̄(0)[· · ·DµDν · · · ]q(0)

Note
In the serie only the symmetric traceless part of Oµν··· is in play.
This is implicit below



P = (p+ p′)/2 ∆ = p′ − p

Generalized form factors.

〈p′|q̄(0)γµq(0)|p〉 = ū(p′)[A1(t)γµ + i
B1(t)

2m
σµα∆α]u(p)

〈p′|q̄(0)γµDνq(0)|p〉 =

ū(p′)[A2P
µγµ + i

B2

2m
Pµσνα∆α +

C2

m
∆µ∆ν ]u(p) etc...

Note that A2(t = 0) =< x > and A2(t = 0) +B2(t = 0) = J

Mellin moments

A1(t) =

∫
dxH(x, t, ξ), B1(t) =

∫
dxE(x, t, ξ)

A2 + 4ξ2C2 =

∫
dxxH, B2 − 4ξ2C2 =

∫
dxxE



Operator renormalization 1

On the lattice we replace the operator A by a discretized
version A(a)

what we (can) compute is lim
a→0
〈A(a)〉

In general lim
a→0
〈A(a)〉 6= 〈 lim

a→0
A(a)〉 = 〈A〉

Operator renormalisation relates
what we want : 〈A〉
to what we compute lim

a→0
〈A(a)〉



Operator renormalization 2

Wilson analysis
the continuum limit is achieved by using a renormalized
operator AR(µ) such that

AR(µ) = lim
a→0

Z(aµ, β)A(a) +
∑
i

Zi(aµ, β)Ai(a)

The Ai are limited by their dimensions and their symmetry.
We consider only operators which have no mixing
(multiplicative renormalization)

AR(µ) = lim
a→0

Z(aµ, β)A(a)

This what limits the number of moments that we can
compute.



Z calculation

RI-MOM scheme
The Zs are computed non perturbatively
by imposing normalisations conditions to matrix elements
between (off-shell) quark states of virtuality p2 = µ2 (MOM)
Need to fix the gauge.
Need a good control of hypercubic lattice artefacts.

At large enough µ the Z(RI −MOM) are related to Z(MS)
through perturbation theory.



Operator evolution
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Some results

Limitations
Disconnected contractions are NOT included
Only first few moments are calculated (operator mixing)

3 extrapolations involved
Continuum limit
Infinite volume
mπ → 140MeV



Transverse size vs x (LHPC)

Up to terms of order ξ2 An(t) ∼
∫
dxxn−1H(x, t, ξ)

so large x in H corresponds to large n in An

Define effective transverse radius

An(t) = An(0)
(
1+ < r2

⊥ > t/6
)

n=1

n=2

n=3
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Momentum fraction from LHPC

< x >= A2(0)
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Momentum fraction from ETMC

< x >= A2(0)



Momentum fraction from QCDSF

< x >= A2(0) smallest pion mass : 170MeV !



Finite volume effect

Finite volume effect from W. Detmold, W. Melnitchouk, A.W. Thomas arXiv :hep-lat/0310003v1



Angular momentum, LHPC

Similar results from ETMC.
No result from QCDSF.

Jq =
1

2
[A2(0) +B2(0)]µ=2GeV
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Orbital angular momentum, LHPC

Write Lq = Jq −
1

2
Σq and get Σq from 〈γ5γµ〉

1

2
DS

u+d

Lu+d
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Lq ∼ 0 at scale µ = 2GeV

This is u+ d. The role of disconnected contractions is
unknown.
This is the gauge invariant orbital momentum r × (∇−A)



List of difficult points

continuum limit a→ 0 not bad
continuum limit (renormalisation, operator mixing) still a lot
to do
Infinite volume limit critical ! Next generation of simulation
(and computer)
Zero temperature limit (excited state mixing) not too bad,
anyway will be fixed by previous point
Chiral extrapolation soon the end of it (oh yes ! ! ! ! ! ! ! ! ! !)
Disconnected contractions everyone hopes they are
negligible. Hard to motivate



End



additions

mπ = 140 MeV,mπL = 3.5, a = 0.05 fm→ L/a ∼ 100


