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Exploring the 3-dimensional phase-space structure 
of the nucleon     
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Figure 1. Representation of the projections of the GTMDs into parton distributions and form factors.

The arrows correspond to different reductions in the hadron and quark momentum space: the solid (red)

arrows give the forward limit in the hadron momentum, the dotted (black) arrows correspond to integrating

over the quark transverse-momentum and the dashed (blue) arrows project out the longitudinal momentum

of quarks. The different objects resulting from these links are explained in the text.

quark (3Q) contribution to nucleon GTMDs, postponing to future works the inclusion of

higher-Fock space components. In this way, we can express the GTMDs in a compact

formula as overlap of LCWFs describing the quark content of the nucleon in the most

general momentum and polarization states. Then, using the projections illustrated in

figure 1, we can discuss the complementary aspects encoded in the different distributions

and form factors.

The plan of the paper is as follows. In section 2, we discuss the formal derivation of

the LCWF overlap representation of the quark contribution to GTMDs, specializing the

results to two light-cone quark models, namely the chiral quark-soliton model (χQSM) and

the light-cone constituent quark model (LCCQM). In section 3, we focus the discussion on

the TMDs, GPDs, PDFs, FFs and charges. In particular, we derive the general formulas

obtained from the projections of GTMDs, and then we discuss and compare the predictions

from both the χQSM and the LCCQM. In the last section, we draw our conclusions.

Technical details and explanations about the derivation of the formulas are collected in

three appendices.

2 Formalism

2.1 Parton Correlation Functions

The maximum amount of information on the quark distributions inside the nucleon is

contained in the fully-unintegrated quark-quark correlator W̃ for a spin-1/2 hadron [2–5],
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SIDIS:
k⊥ dependence of unpolarized partonic 

distributions (Cahn effect)  
Sivers distribution 

Collins fragmentation and transversity
model (+ data) computation of Jq

role of intrinsic motion in other processes:
D-Y processes 

AN in pp → h + X 

••••••••

information on TMDs 



! p↑ → ! hX

TMD factorization holds at large Q2, and PT ≈ k⊥ ≈ ΛQCD

(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz)

dσ!p→!hX =
∑

q

fq(x,k⊥;Q2)⊗ dσ̂!q→!q(y, k⊥;Q2)⊗Dh
q (z,p⊥;Q2)

PT ! Q2Two scales:

TMDs in SIDIS 

λq λ′
q

p, Sp, S

Q2Q2

h h

d6σ ≡ d6σ!p↑→!hX

dxB dQ2 dzh d2P T dφS

p⊥ ! P T − zh k⊥



TMDs: the leading-twist correlator, with intrinsic 
k┴, contains 8 independent functions 

Φ(x,k⊥) =
1
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The nucleon at twist-2    
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Figure 1: Illustration of kinematics, especially the azimuthal angles, for SIDIS in the target
rest frame [6]. P hT and ST are the transverse parts of P h and S with respect to the photon
momentum q = l − l′.

notation of [6], one has

dσ

dx dy dφS dz dφh dP 2
hT

∝
{

FUU,T + ε cos(2φh)F cos 2φh

UU

+ S‖ ε sin(2φh)F sin 2φh

UL + S‖ λe

√

1 − ε2 FLL

+ |S⊥|
[

sin(φh − φS)F sin(φh−φS)
UT,T + ε sin(φh + φS)F sin(φh+φS)

UT

+ ε sin(3φh − φS)F sin(3φh−φS)
UT

]

+ |S⊥|λe

√

1 − ε2 cos(φh − φS)F cos(φh−φS)
LT + . . .

}

. (8)

In Eq. (8), ε is the degree of longitudinal polarization of the virtual photon which can
be expressed through y [15, 6], S‖ denotes longitudinal target polarization, and λe is the
lepton helicity. The structure functions FX,Y (X,Y refer to the lepton and the nucleon,
respectively: U = unpolarized; L, T = longitudinally, transversely polarized) merely depend
on x, z, and PhT . By choosing specific polarization states and weighing with the appropriate
azimuthal dependence, one can extract each structure function in (8) as past experiments
have already unambiguously shown.

For TMD studies one is interested in the kinematical region defined by

PhT # ΛQCD $ Q , (9)

for which the structure functions can be written as certain convolutions of TMDs. In this
region, the components in Eq. (8) appear at leading order when expanding the cross section
in powers of 1/Q, while additional ones show up at subleading order [1, 15, 6, 16]. Measuring
the structure functions in Eq. (8) allows one to obtain information on all eight leading quark
TMDs. To be specific, one has (for a spinless final state hadron) [6, 16],

FUU ∼
∑

q

e2
q f q

1 ⊗ Dq
1 F cos(φ−φS)

LT ∼
∑

q

e2
q gq

1T ⊗ Dq
1 (10)

FLL ∼
∑

q

e2
q gq

1L ⊗ Dq
1 F sin(φ−φS)

UT ∼
∑

q

e2
q f⊥q

1T ⊗ Dq
1 (11)

F cos(2φ)
UU ∼

∑

q

e2
q h⊥q

1 ⊗ H⊥q
1 F sin(φ+φS)

UT ∼
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q

e2
q hq
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1 (12)
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chiral-even 
TMDs

chiral-odd 
TMDs
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〈k2
⊥〉 = 0.28 (GeV)2 〈p2

⊥〉 = 0.25 (GeV)2

1
Q

cos φ F cos φ
UU

∼ fq
1 ⊗Dq

1 ⊗ dσ̂ +
(
hq⊥

1 ⊗Hq⊥
1 ⊗ d∆σ̂

)

dσ̂!q→!q ∝ ŝ2 + û2 =
Q4

y2

[
1 + (1− y)2 − 4

k⊥
Q

(2− y)
√

1− y cos ϕ

]

O(k⊥/Q)TMDs in unpolarized SIDIS: “Cahn effect” at

EMC data
µp and µd

M.A., M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia and A. Prokudin

assuming gaussian k⊥ and p⊥ dependences:



CLAS data                                               
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FIG. 11: The φ-dependence of the data taken at Q2 = 2 (GeV/c)2, x = 0.24, z = 0.18 and p2
T = 0.5

(GeV/c)2 (full triangles) together with the results of the azimuthal moment (solid lines) and fitting

(dashed line) methods.

detector non-uniformities.

Systematic uncertainties arising from electron identification were estimated by comparing

two different methods (as in Ref. [42]) of pion rejection, one based on Poisson shapes of

Cherenkov counter spectra and another on the geometrical and temporal matching between

the measured track and Cherenkov signal.

The systematic uncertainty arising from π+ identification has two contributions. One was

estimated from the difference between the ratios of events in the missing neutron peak before

and after pion identification as calculated for data and GSIM simulations. The second part

comes from our treatment of kaon contamination (see section IVC), which was assumed to

be 20%. The two errors were added in quadrature.

Radiative corrections are model-dependent. To estimate this systematic uncertainty we

changed the model used in the radiative correction code by 15% and took the resulting

difference as an estimate of the uncertainty.

There is an additional overall systematic uncertainty of 1% due to uncertainties in the

target length and density. The target length was 5±0.05 cm and the liquid-hydrogen density

was ρ = 0.0708 ± 0.0003 g/cm3 giving approximately a 1% uncertainty.
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FIG. 14: The p2
T -dependence of the φ-independent term H2 +εH1 at x = 0.24 and z = 0.30. The lines represent exponential fits

to the data for Q2 = 1.74 (GeV/c)2 (full circles and solid line), Q2 = 2 (GeV/c)2 (full squares and dashed line), and Q2 = 2.37
(GeV/c)2 (triangles and dotted line). The errors bars are statistical only.

leads to a cut on the p2
T -distribution, which is not present in high energy experiments. To account for this low-energy

effect we modified the parameterization as:

〈p̃2
T 〉 =

〈p2
T 〉

1 + 〈p2
T 〉/(p2

T )max
. (23)

The dotted curve in Fig. 15 shows that this new parameterization follows the data points, but the absolute normal-
ization given by the parameters a and b is still too high. This modification breaks the factorization between x, Q2

and pT in the low-z region because the p2
T -distribution now depends also on x and Q2.
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FIG. 15: The z-dependence of 〈p2
T 〉 at Q2 = 2.37 (GeV/c)2 and x = 0.27. The points are the data from the present analysis.

The curves show the maximum allowed p2
T = (p2

T )max (dashed), the parameterization of high energy data from Eq. 8 (solid),
and the low-z modification from Eq. 23. The error bars are statistical only and they are smaller than the symbol size.

At large z, pmax
T is also large. Therefore, we can check the factorization of p2

T from x and Q2. Fig. 16 shows

evidence in favor of gaussian dependence
Schweitzer, Teckentrup, Metz, arXiv:1003.2190



Transversity 2011G. Schnell 

“Cahn modulation” - proton vs. deuteron
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FIG. 9: Cahn contribution to 〈cosφh〉 for π+ and π− production at HERMES and COMPASS kinematics, as a function
of xB (left plot), zh (central plot) and PT (right plot). The solid (red) line corresponds to 〈cosφh〉 calculated according to
Eq. (20) with a numerical k⊥ integration over the range [0, kmax

⊥ ]. The dashed (blue) line is 〈cosφh〉 calculated according
to Eq. (30) obtained by integrating over k⊥ analytically. We do not show the Boer-Mulders contribution as it is negligible
(see Fig. 10). The full circles are preliminary experimental data from HERMES [23] and COMPASS [24] Collaborations.

cuts on the partonic transverse momenta which, by cutting the range of allowed k⊥ values, effectively reduces
the average value of k⊥ decreasing the contribution generated by the Cahn effect. Nevertheless, a slight puzzle
still remains: while HERMES data seem to demand a very small Cahn contribution, it can be seen from the
analysis in Ref. [25] and from Fig. 15 that COMPASS data seem to require a large Cahn contribution. Large
Cahn contributions can only be generated by large k⊥ values, as we have seen. Since the COMPASS target is
not a pure Deuterium target, but a Li6D target, possible nuclear effects can enhance the values of k⊥. Partonic
transverse motion generated by the nuclear smearing mechanisms does not have to fulfill the bounds in Eq. (13)
and (15) and can be effectively simulated by a traditional Gaussian smearing, without any restriction. Future
COMPASS data on pure hydrogen target will help our understanding.

Boglione, Melis, Prokudin, PRD 84 (2011) 034033



Gaussian k⊥ distribution of TMDs?
 

x, z dependence? 
flavour dependence?
energy dependence?

k⊥ dependence of ∆q vs. q?
  

〈k2
⊥〉(x, Q2) 〈p2

⊥〉(z, Q2)

the azimuthal dependence induced by 
intrinsic motion is clearly observed 

phenomenolgical analysis and data need 
much improvement 

more data covering wider kinematical ranges



Siver function phenomenology in SIDIS

extraction of Sivers function based on very simple 
parameterization, with x and k⊥ factorization. Typically:  

M.Anselmino, M.Boglione, J.C.Collins, U.D'Alesio, A.V.Efremov, K.Goeke, A.Kotzinian, 
S.Menzel, A.Metz, F.Murgia, A.Prokudin, P.Schweitzer, W.Vogelsang, F.Yuan,          

A. Bacchetta, M. Radici

2 〈sin(φ− φS)〉 = Asin(φ−φS)
UT ≡ 2

∫
dφdφS (dσ↑ − dσ↓) sin(φ− φS)

∫
dφ dφS (dσ↑ + dσ↓)

F sin(φ−φS)
UT

∆Nfq/p↑(x, k⊥) = −2k⊥
M

f⊥q
1T (x, k⊥) = Nxα(1− x)β h(k⊥)fq/p(x, k⊥)

fq/p(x, k⊥) = fq(x)
1

π〈k2
⊥〉 e−k2

⊥/〈k2
⊥〉

with

       constant and 
flavour independent 
〈k2
⊥〉
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simple Sivers functions for u and d quarks are sufficient 
to fit the available SIDIS data 

large and very small x dependence not constrained by data 

new and previous  
extraction of       
u and d Sivers 

functions 

Anselmino et al.
Eur. Phys. J. A39,89 (2009)

S. Melis and A. Prokudin, 
preliminary results

similar results from other groups 
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azimuthal dependences from 
target fragmentation region

(fracture functions)  

P, S P, S
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f
P, S P, S

k

k′

Ph Ph

q q

M

Figure 1: The handbag diagram for the SIDIS hadronic tensor in the current fragmentation region
(left) and in the target fragmentation region (right).

Current fragmentation region (CFR): P+
h ∼ Q ,

Target fragmentation region (TFR): P+
h ∼ 0 .

Equivalently, defining in the c.m. γ∗N frame the hadron momentum as Ph = (Eh, P h⊥, Ph‖), the
usual Feynman variable xF = 2Ph‖/W identifies the CFR and the TFR, respectively, by xF > 0 and
xF < 0. A detailed discussion of the operational criteria to separate the two regions can be found in
Ref. [3].

In the CFR the SIDIS cross section integrated over the transverse momentum of the final hadron
can be factorized at lowest order as

dσCFR

dxB dy dzh

=
∑

a

e2
a fa(xB)

dσ̂

dy
Da(zh) , (3)

where fa(xB) is the distribution function of parton a, Da(zh) is the fragmentation function of parton
a into hadron h and dσ̂/dy is the elementary cross section of lepton-quark scattering. The parton-
model graph describing this process is the handbag diagram shown in Fig. 1 (left). The partonic
meaning of the two variables is the following: xB is the fraction of the longitudinal momentum of
the nucleon carried by the quark, zh is the fraction of the longitudinal momentum of the struck
quark carried by the final hadron (we have dropped all scale dependences in the distribution and
fragmentation functions).

In the TFR the factorization in xB and zh of Eq. (3) does not hold any longer, as it is not possible
to separate the quark emission from the hadron production. Moreover, zh is not the proper variable
to describe this region. The reason is easily understood if we write zh in the c.m. γ∗N frame (we
neglect as usual hadron masses):

zh =
Eh

E(1 − xB)

(1 − cos θh)

2
, (4)

where θh is the angle between P h and P . The zh variable does not discriminate between two different

3

dσTFR =
∑

a

Ma(xB , ζ,P 2
h⊥)⊗ dσ̂(y)

fracture functions

ζ ! Eh

E
! (1− xB)|xF |

CFR

TFR

P h⊥



possible Sivers-like azimuthal dependence 
from target fragmentation region 

azimuthal modulations in TFR   
(M.A, V. Barone, A. Kotzinian, PL B699 (2011) 108 ) 

∑

h

∫

dζ ζ
∫

d2P h⊥

{

∆T M̂⊥ +
mN

mh

k⊥ · P h⊥

k2
⊥

∆T M̂h

}

= −(1 − xB) h⊥
1 (xB, k2

⊥) (46)

∑

h

∫

dζ ζ
∫

d2P h⊥

{

∆T M̂⊥⊥
T +

m2
N

m2
h

2(k⊥ · P h⊥)2 − k2
⊥P 2

h⊥

(k2
⊥)2

∆T M̂hh
T

}

(47)

= (1 − xB) h⊥
1T (xB, k2

⊥)
∑

h

∫

dζ ζ
∫

d2P h⊥

{

∆T M̂T +
k2
⊥

2m2
N

∆T M̂⊥⊥
T +

P 2
h⊥

2m2
h

∆T M̂hh
T

}

= (1 − xB) h1(xB, k2
⊥) . (48)

These are the momentum sum rules satisfied by the unintegrated fracture functions. They might be
useful for constraining and guiding simple models of fracture functions.

5 Cross sections and angular distributions

Contracting the hadronic tensor, Eqs. (23, 24), with the symmetric and antisymmetric part of the
leptonic tensor, Eqs. (13, 14), and using Eq. (25), yields

Lµν
(s)W

(s)
µν =

8Q2

y2

(

1 − y +
y2

2

)

ζ
∑

a

e2
a

∫

d2k⊥ M[γ−] (49)

Lµν
(a)W

(a)
µν = λl

8Q2

y2
y

(

1 −
y

2

)

ζ
∑

a

e2
a

∫

d2k⊥M[γ−γ5] . (50)

We focus on three processes:

1. lepto-production of a spinless hadron, l + N → l′ + h + X;

2. lepto-production of a spinless hadron plus a quark jet, l + N → l′ + h + jet + X;

3. lepto-production of a polarized hadron, l + N → l′ + h↑ + X (integrated over all transverse
momenta).

5.1 Lepto-production of a spinless hadron

Consider the lepto-production of an unpolarized or spinless hadron (for instance, pion lepto-production,
which is the most common process). Inserting Eqs. (30, 33) into Eqs. (49, 50), and using Eq. (10),
one finds that the cross section for this process is

dσTFR

dxB dy dζ d2P h⊥ dφS

=
2α2

em

Q2y

{(

1 − y +
y2

2

)

×
∑

a

e2
a

[

M(xB , ζ , P 2
h⊥) − |S⊥|

|P h⊥|
mh

Mh
T (xB, ζ , P 2

h⊥) sin(φh − φS)

]

+ λl y
(

1 −
y

2

)

∑

a

e2
a

[

S‖ ∆ML(xB, ζ , P 2
h⊥)

+ |S⊥|
|P h⊥|
mh

∆Mh
T (xB, ζ , P 2

h⊥) cos(φh − φS)

]}

. (51)

11

cross section for lepto-production of an unpolarized or 
spinless hadron in the TFR 



Sivers effect now observed by two 
experiments (+ Hall-A AUT on neutrons),     

but needs further measurements

Q2 of data not so high, role of higher twists? 
clear separation of TFR and CFR needed...

more sophisticated parameterization...
universality of Sivers function?...              

great improvement in study of QCD evolution 
(Aybat, Rogers, arXiv:1101.5057) 



d∆σ̂ = dσ̂!q↑→!q↑ − dσ̂!q↑→!q↓

Asin(φ+φS)
UT ≡ 2

∫
dφdφS [dσ↑ − dσ↓] sin(φ + φS)

∫
dφdφS [dσ↑ + dσ↓]

Collins effect in SIDIS couples to transversity

F sin(φ+φS)
UTCollins effect in SIDIS - 

Dh/q,sq
(z,p⊥) = Dh/p(z, p⊥) +

1
2
∆NDh/q↑(z, p⊥) sq · (p̂q × p̂⊥)

dσ↑ − dσ↓ =
∑

q

h1q(x, k⊥)⊗ d∆σ̂(y, k⊥)⊗∆NDh/q↑(z,p⊥)

q

q’
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independent information on Collins 
function from e+e– processes  

q̄

q
e+e−

Sq

Sq̄

θ

e+ 

ϕ1

ϕ2−π e- 

e+ 

thrust-axis

A12(z1, z2, θ, ϕ1 + ϕ2) ≡
1

〈dσ〉
dσe+e−→h1h2X

dz1 dz2 d cos θ d(ϕ1 + ϕ2)

= 1 +
1
4

sin2 θ

1 + cos2 θ
cos(ϕ1 + ϕ2)×

∑
q e2

q ∆NDh1/q↑(z1) ∆NDh2/q̄↑(z2)∑
q e2

qDh1/q(z1)Dh2/q̄(z2)
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Figure 5. The transversity distribution functions
for u and d flavours as determined by our global
fit; we also show the Soffer bound (highest or low-
est lines) [?] and the (wider) bands of our previ-
ous extraction [?].

transverse single spin asymmetry Asin(φS+φh)
UT has

been recently measured by the COMPASS exper-
iment operating with a polarized hydrogen target
(rather than a deuterium one). In Fig. 9 we show
our predictions against these preliminary data.
The agreement is encouraging.

In Fig. 10 we present our estimates for JLab
operating with a proton target at 12 GeV. Notice
that JLab results will give important information
on the large x region, which is left basically un-
constrained by the present SIDIS data from HER-
MES and COMPASS. In this region our estimates
must be taken with some care. We recall that the
large x behaviour of our parametrization is con-
trolled by the same β parameter for ∆T u and
∆T d (since present data do not cover the large
x region). The same is true for the Collins frag-
mentation functions, whose large z behaviour is
driven by the same parameter δ for favored and
unfavored Collins FF. On the other hand for the
small to medium x region, well constrained by
SIDIS measurements, data support the choice of
a universal behaviour xα for ∆T u and ∆T d. The
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The first analysis along this line was presented
in [19]. Here we repeat the analysis, exploiting
the new high precision data recently released by
the HERMES [20] and COMPASS [21] Collab-
orations for SIDIS, and by the Belle Collabora-
tion [22] for e+e− annihilation processes, in order
to refine and reduce the uncertainty of the previ-
ous extraction.
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Figure 1. Fits of HERMES [20] data. The shaded
area corresponds to the uncertainty in the param-
eter values, see text.

After completion of this analysis, new data
from COMPASS operating on a transversely po-
larized hydrogen target have been released: we
have not use these data in our fit but will com-
pare them with our predictions.

The two sets of Belle data, coming from two
analyses of the same experimental events, are not
independent. Therefore we include only one set of
data in the fit, either A0 or A12 data. In this anal-
ysis we report the results we obtained by using
A12 data, the cos(ϕ1 + ϕ2) method. The conse-
quences of fitting A0 instead of A12 are presently
under investigation.

In Fig. 1 and Fig. 2 we show the best fits to
the HERMES [20] and COMPASS [21] data, re-
spectively. Notice that the π0 data (HERMES)
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Figure 2. Fits of COMPASS [21] data. The
shaded area corresponds to the uncertainty in the
parameter values, see text.

have not been used in the fit; in Fig. 1 we show
our estimates, based on the extracted transver-
sity and Collins functions, and compare them to
data. Fig. 3 shows the fit to the Belle A12 asym-
metry, whereas in Fig. 4 our predictions for the
A0 asymmetry are compared with data [22].

The central curves correspond to the central
values of the parameters in Table 1, while the
shaded areas correspond to two-sigma deviation
at 95.45% Confidence Level, and are calculated
minimizing and maximizing the function under
consideration, in a 9-dimensional parameter space
hyper-volume corresponding to two-sigma devia-
tion (for details see Appendix A of Ref. [38]).

Table 1 collects the results of our best fit to the
new data sets [20–22], while in Figs. 5 and 6 we
show our updated transversity distribution and
Collins fragmentation functions together with the
uncertainty bands of our previous extraction [19].
We can definitely say that the two extractions are
compatible with each other, with the new error
bands strongly reduced. The transversity for up
quarks results now larger (compared to our previ-
ous extraction), while that for down quarks is bet-
ter constrained in sign and non compatible with
zero. In this respect the new data from SIDIS

best fit of HERMES data
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pare them with our predictions.
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analyses of the same experimental events, are not
independent. Therefore we include only one set of
data in the fit, either A0 or A12 data. In this anal-
ysis we report the results we obtained by using
A12 data, the cos(ϕ1 + ϕ2) method. The conse-
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have not been used in the fit; in Fig. 1 we show
our estimates, based on the extracted transver-
sity and Collins functions, and compare them to
data. Fig. 3 shows the fit to the Belle A12 asym-
metry, whereas in Fig. 4 our predictions for the
A0 asymmetry are compared with data [22].

The central curves correspond to the central
values of the parameters in Table 1, while the
shaded areas correspond to two-sigma deviation
at 95.45% Confidence Level, and are calculated
minimizing and maximizing the function under
consideration, in a 9-dimensional parameter space
hyper-volume corresponding to two-sigma devia-
tion (for details see Appendix A of Ref. [38]).

Table 1 collects the results of our best fit to the
new data sets [20–22], while in Figs. 5 and 6 we
show our updated transversity distribution and
Collins fragmentation functions together with the
uncertainty bands of our previous extraction [19].
We can definitely say that the two extractions are
compatible with each other, with the new error
bands strongly reduced. The transversity for up
quarks results now larger (compared to our previ-
ous extraction), while that for down quarks is bet-
ter constrained in sign and non compatible with
zero. In this respect the new data from SIDIS
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Figure 3. Fit of the Belle [22] data on the A12

asymmetry (the cos(ϕ1 + ϕ2) method).
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have been crucial. It is worth noticing that while
the transversity for up quarks is strongly con-
strained by HERMES data, in particular through

Table 1
Best values of the free parameters for the u and d
transversity distribution functions and for the fa-
vored and unfavored Collins fragmentation func-
tions. We obtain χ2/d.o.f. = 1.3. Notice that the
errors generated by MINUIT are strongly corre-
lated, and should not be taken at face value. The
significant fluctuations in our results are shown
by the shaded areas in Figs. 1-4.

NT
u = 0.64 ± 0.34 NT

d = −1.00 ± 0.02

α = 0.73 ± 0.51 β = 0.84 ± 2.30

NC
fav = 0.44 ± 0.07 NC

unf = −1.00 ± 0.06

γ = 0.96 ± 0.08 δ = 0.01 ± 0.05

M2
h = 0.91 ± 0.52 (GeV/c)2

the positive pion azimuthal asymmetry, the addi-
tion of COMPASS deuteron data to the fit allows
a better determination of ∆T d. We recall here
that, in analyzing SIDIS data, we have assumed
the transversity distributions for sea quarks and
antiquarks to vanish. The unfavored Collins func-
tion results large, in size, and negative, consis-
tently with other extractions [37,39,19].

A word of caution has to be added here since
SIDIS data (HERMES and COMPASS) are col-
lected at a much smaller scale (Q2 " 2.5 GeV2)
compared to the Belle data (Q2 = 100 GeV2).
Both azimuthal asymmetries in SIDIS and e+e−

involve spin and TMD functions whose behaviour
upon scale variation should be described in the
context of Collins-Soper factorization [41,27]. Be-
yond tree level this would result in a soft factor
entering TMD convolutions with the correspond-
ing Sudakov suppression. This, as discussed by
Boer in Refs. [42,43], might imply an underes-
timation of the Collins function as extracted at
tree level from the azimuthal asymmetry at Belle
(since beyond tree level this will be larger). Hence
the combined extraction of the transversity from
SIDIS at a lower Q2 (less Sudakov suppression),
might lead to an overestimation of ∆T q. This
issue is currently under study. At this stage we
only recall that here, as in Ref. [19], the Q2 de-
pendence of the Collins FF is included assuming
it to be the same as that of the unpolarized frag-

best fit of COMPASS and 
BELLE data
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Bacchetta et al., P.R.L. 107 (11)

1st extraction of transversity 
in coll. framework

1. start from D1
q=u,s,c(z,Mh; Q0

2=1),  H1
<)u(z,Mh; Q0

2=1)    Bacchetta & Radici, P.R.D74 (06)

    resonant + nonresonant channel inspired by spect. model
2. evolve at LO with HOPPET  (updating with chiral-odd kernel)

3. fit d!0 from PYTHIA (adatped to BELLE) and d!0 " a12R   bin by bin
4. integrate D1

q and H1
<)u in HERMES range 0.5#Mh#1 , 0.2#z#0.7

5. get nu
$(Q2)/nu(Q2):  Q2=2.5 GeV2   nu

$/nu= -0.251±0.006ex±0.023th

                                  [nu
$/nu (2.5)]  / [nu

$/nu (100)] ~ 92%(±8%) 
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results recently confirmed by extraction based on 
coupling of transversity with di-hadron fragmentation 

function (SIDIS + BELLE data)
Bacchetta, Radici P.R.L. 107 (2011)

M. Radici, talk at Transversity 2011



Figure 4.2. The isosinglet moment Bu+d
20 (t) as a function of simulated pion mass and t [604].

Figure 4.3. Lattice results for Ju and Jd compared with various models [582, 701, 605, 702] and
constraints derived from experiment (colored bands)

2. The difference between the two sheets gives the variation ofHBChPT fits. However, it
would be safer to only use ensembles with squared pion masses belowm2

π ≤ 0.25GeV2,
where ChPT is rather well under control, which was obviously not possible with the
ensembles available for this analysis.

3. One is especially interested in the t = 0 limit of B20 in view of Ji’s sum rule,

〈
J3
q

〉
=

1

2
[Aq

2,0(0) +Bq
2,0(0)] .

Already today lattice simulations give rather precise results for the total angular
momentum carried by the different quark species in a nucleon, see Fig. 4.3. In future
these results will further improve, e.g. due to the use of twisted boundary conditions
to realize proton momenta different from the natural ones on a lattice, i.e. different
from pj =

2π
L nj.

Thus, much has been done already, and much more will be done in future. Extrapolating
the progress of recent years to the time an EIC will start operation it seems realistic to expect

231

Angular momenta from TMDs

4

Finally, using Eq. (1), we can compute the total angu-
lar momentum carried by each flavor q and q̄ at Q2

L = 1
GeV2. We get

Ju = 0.266± 0.002+0.009
−0.014, J ū = 0.014± 0.004+0.001

−0.000,

Jd = −0.012± 0.003+0.024
−0.006, J d̄ = 0.022± 0.006+0.001

−0.000,

Js = 0.005+0.000
−0.007, J s̄ = 0.004+0.000

−0.005.

As before, the first symmetric error is statistical and
related to the errors on the fit parameters, while the
second asymmetric error is theoretical and reflects the
uncertainty introduced by the other possible scenarios.
Our present estimates agree with other analyses based
on the forward limit of the GPD E extracted from ex-
periments [29, 30, 38], including also sea quarks [39]. It
indicates a total contribution to the nucleon spin from
quarks and antiquarks of 0.299 ± 0.008+0.035

−0.032, of which
89% is carried by the up quark.

In summary, we have presented a determination of
the quark angular momentum assuming a connection be-

tween the collinear limit of the generalized parton dis-
tribution E and the Sivers transverse-momentum distri-
bution. We have shown that it is possible to fit at the
same time the nucleon anomalous magnetic moments and
data for semi-inclusive single-spin asymmetries produced
by the Sivers effect. Several different scenarios produce
equally good χ2 fits. Our strategy opens a plausible way
to quantifying the quark angular momentum, and im-
poses additional constraints on the Sivers function.
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is there a quantitative link between the Sivers 
distribution and orbital angular momentum?

Bacchetta, Radici, arXiv:1107.5755

f⊥(0)a
1T (x;Q2

L) = −L(x)Ea(x, 0, 0;Q2
L),with model assumption

fix Eq and      best fitting SIDIS data on Sivers asymmetry 
and the nucleon magnetic moments

f1T
⊥

∑

q

eqv

∫ 1

0
dx Eqv (x, 0, 0) = κ

Constraining quark angular momentum through semi-inclusive measurements

Alessandro Bacchetta1, 2, ∗ and Marco Radici2, †

1Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, and
2INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy

The determination of quark angular momentum requires the knowledge of the generalized par-
ton distribution E in the forward limit. We assume a connection between this function and the
Sivers transverse-momentum distribution, based on model calculations and theoretical considera-
tions. Using this assumption, we show that it is possible to fit at the same time nucleon magnetic
moments and semi-inclusive single-spin asymmetries. This imposes additional constraints on the
Sivers function and opens a plausible way to quantifying quark angular momentum.

PACS numbers:

Nucleons are spin-1/2 composite particles made by
partons (i.e., quarks and gluons). Determining how
much of the nucleons’ spin is carried by each parton
is a critical endeavour towards an understanding of the
microscopic structure of matter. In this work, we pro-
pose a way to constrain the angular momentum Ja of
a (anti)quark with flavor a. To do this, we adopt an
assumption, motivated by model calculations and the-
oretical considerations, that connects Ja to the Sivers
transverse-momentum distribution (TMD) measured in
semi-inclusive deep-inelastic scattering (SIDIS) [1]. The
Sivers function f⊥a

1T [2] is related to the distortion of the
momentum distribution of an unpolarized parton a when
the parent nucleon is transversely polarized. We show
that this assumption of relating Ja to f⊥a

1T is compatible
with existing data, and we derive estimates of Ja.

The total angular momentum of a parton a (with
a = q, q̄) at some scale Q2 can be computed as a spe-
cific moment of generalized parton distribution functions
(GPD) [3]

Ja(Q2) =
1

2

∫ 1

0
dx x

(
Ha(x, 0, 0;Q2) + Ea(x, 0, 0;Q2)

)
.

(1)
The GPD Ha(x, 0, 0;Q2) corresponds to the familiar
collinear parton distribution function (PDF) fa

1 (x;Q
2),

which gives the probability of finding at the scale Q2

a parton with flavor a and fraction x of the (longitu-
dinal) momentum of the parent nucleon. The forward
limit of the GPD Ea does not correspond to any collinear
PDF [4]. It is possible to probe the function Ea in
experiments, but never in the forward limit (see, e.g.,
[5]). Assumptions are eventually necessary to constrain
Ea(x, 0, 0;Q2). This makes the estimate of Ja partic-
ularly challenging. The only model-independent con-
straint is the scale-independent sum rule

∑

q

∫ 1

0
dxEqv (x, 0, 0) = κ, (2)

∗Electronic address: alessandro.bacchetta@unipv.it
†Electronic address: marco.radici@pv.infn.it

where Eqv = Eq−E q̄ and κ denotes the anomalous mag-
netic moment of the parent nucleon.
Inspired by results of spectator models [6–10] and theo-

retical considerations [1], we propose the following simple
relation at a specific scale QL,

f⊥(0)a
1T (x;Q2

L) = −L(x)Ea(x, 0, 0;Q2
L), (3)

where we define the n-th moment of a TMD with respect
to its transverse momentum pT as

f⊥(n)a
1T (x;Q2) =

∫
d2pT

(
p2T
2M2

)n

f⊥a
1T (x, p2T ;Q

2), (4)

and M is the nucleon mass.
In Eq. (3), L(x) is a flavor-indepedent function, repre-

senting the effect of the QCD interaction of the outgoing
quark with the rest of the nucleon. The name “lens-
ing function” has been proposed by Burkardt to denote
L(x) [11]. Computations of the lensing function beyond
the single-gluon approximation have been proposed in
Ref. [12]. It is likely that in more complex models the
above relation is not preserved, at least not as a simple
product of x-dependent functions [8]. Nevertheless, it is
useful and interesting to speculate on the consequences
of this simple assumption. As a more refined picture of
TMD and GPD emerges, it will be possible to improve
the reliability of this assumption or eventually discard it.
The present attempt should be considered as a “proof of
concept” for further studies in this direction.
The advantage of adopting the Ansatz of Eq. (3) is

twofold: first, it allows us to use the value of the anoma-
lous magnetic moment to constrain the integral of the
valence Sivers function; second, it allows us to obtain
flavor-decomposed information on the x-dependence of
the GPD E and ultimately on the quark total angular
momentum. This is an enticing example of how assum-
ing model-inspired connections between GPD and TMD
can lead to powerful outcomes.
The Sivers function has been extracted from SIDIS

measurements by three groups [13–16]. All of
them assume a flavor-independent Gaussian transverse-
momentum distribution of the involved TMD. Although
this is an oversimplification, we adopt the same choice.

ar
X

iv
:1

1
0
7
.5

7
5
5
v
1
  
[h

ep
-p

h
] 

 2
8
 J

u
l 

2
0

1
1

use sum rule

usual PDF



Transversity & Collins function phenomenology 
in SIDIS and e+e-

Same simple parametrization as for Sivers, but 
Collins effect has been clearly observed by 

three independent experiments:
HERMES, COMPASS and BELLE 

Collins function expected to be universal

QCD evolution important, as BELLE data are at 
a much higher energy than SIDIS data



AN in p p → π X, the big challenge

AN ≡ dσ↑ − dσ↑

dσ↑ + dσ↑

and all beautiful RHIC data, persisting at high energy... 

E704  √s = 20 GeV    
0.7 < pT < 2.0   

Systematic errors potentially arise from several sources.
The bunch counter, used for the spin directions, identifies
events in the abort gaps arising from single-beam back-
grounds. They account for <5! 10"4 of the observed
yield. Systematic effects from gain variations with time
are controlled by polarization reversals of the stored beam
bunches, as demonstrated by examples of spin-sorted M!!

for L;R modules in the inset of Fig. 2. Distributions of the
significance, Si ¼ ðAN;i " ANÞ=!AN;i, are well described
by zero mean value Gaussian distributions with " equal to
unity, as expected if the uncertainties are dominated by
statistics, except near the trigger threshold where larger "
is observed. Systematic errors are estimated from "!
!AN and differences in AN associated with #0 identifica-
tion, with the largest value chosen. The upper limit on a
correlated systematic error, common to all points, arising
from instrumental effects is $AN & 4! 10"4.

The same pair of modules concurrently measure AN

values consistent with zero for xF < 0 and AN that in-
creases with xF for xF > 0, depending on which beam
spin is chosen. Null results at xF < 0 are natural since a
possible gluon Sivers function is probed where the unpo-
larized gluon distribution is large. For xF > 0, a calculation
[13,28] using quark Sivers functions fit [29] to SIDIS data
[7] best describes our results at h%i ¼ 3:3. Twist-3 calcu-
lations [16] that fit p" þ p ! #þ X data at

ffiffiffi
s

p ¼ 20 GeV
[4] and preliminary RHIC results from the 2003 and 2005
runs at

ffiffiffi
s

p ¼ 200 GeV [21,22] best describe the data at
h%i ¼ 3:7. Both calculations are in fair agreement with the
variation of AN with xF. Neither calculation describes data
at both h%i.

Events from modules at different h%i that overlap in the
xF-pT plane (Fig. 1) provide consistent results. Hence, it is
possible to further bin the results not only by xF but also by
pT . For this analysis, pT is determined from the measured
energy, the fitted position of the #0 within an FPD module,
and the measured position of the module relative to the
beam pipe and to the collision vertex. The z component of
the event vertex uses a coarse time difference between the
east and west beam-beam counters, and is determined to
(20 cm resulting in !pT=pT ¼ 0:04, where !pT is the
uncertainty in pT . One method of determining the pT

dependence (Fig. 3) was to select events with jxFj> 0:4.
AN is consistent with zero for xF <"0:4. For xF > 0:4,
there is a hint of an initial decrease of AN with pT , although
the statistical errors are large, since h%i ¼ 4:0 data were
only obtained in the 2003 and 2005 runs with limited
integrated luminosity and polarization. For pT >
1:7 GeV=c, AN tends to increase with pT for xF > 0:4.
This is contrary to the theoretical expectation that AN

decreases with pT .
The results in Fig. 3 may still reflect small correlations

between xF and pT for each point, rather than the depen-
dence of AN on pT at fixed xF. To eliminate this correla-
tion, event selection from Fig. 1 was made in bins of xF,

followed by bins in pT . The resulting variation of AN with
pT is shown in Fig. 4, compared to calculations [13] using
a Sivers function fit to p" þ p ! #þ X data [4] and twist-
3 calculations [16]. For each point, the variation of hxFi is
smaller than 0.01. There is a clear tendency for AN to
increase with pT , and no significant evidence over the
measured range for AN to decrease with increasing pT , as
expected by the calculations. This discrepancy may arise
from unexpected TMD fragmentation contributions, xF; pT

dependence of the requisite color-charge interactions, evo-
lution of the Sivers functions, or from process dependence
not accounted for by the theory.
In summary, we have measured the xF and pT depen-

dence of the analyzing power for forward #0 production in
p" þ p collisions at

ffiffiffi
s

p ¼ 200 GeV in kinematics (0:3<
xF < 0:6 and 1:2< pT < 4:0 GeV=c) that straddle the
region where cross sections are found in agreement with
pQCD calculations. The xF dependence of the #0 AN is in

FIG. 3 (color online). Analyzing powers versus #0 transverse
momentum (pT) for events with scaled #0 longitudinal momen-
tum jxFj> 0:4. Errors are as described for Fig. 2.

FIG. 4 (color online). Analyzing powers versus #0 transverse
momentum (pT) in fixed xF bins (see Fig. 1). Errors are as
described for Fig. 2. The calculations are described in the text.

PRL 101, 222001 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

28 NOVEMBER 2008

222001-5

E704

BNL, ANL, Fermilab, Serpukhov

also: ! Polarization

" L

R

large SSAs in p p → ! X, ~ 1990 and before 

E704  !s = 20 GeV    

0.7 < pT < 2.0   
AN ≡ dσ↑ − dσ↑

dσ↑ + dσ↑

Sivers effect, 1990

Collins effect, 1993

Boer-Mulders effect, 1998 



1. Generalization of collinear scheme 
(assuming factorization)

(Field-Feynman in unpolarized case)
M.A., M. Boglione, U. D’Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, ...

a
b

c
X

X

σ̂

dσ↑ =
∑

a,b,c=q,q̄,g

fa/p↑(xa,k⊥a)⊗ fb/p(xb,k⊥b)⊗ dσ̂ab→cd(k⊥a,k⊥b)⊗Dπ/c(z,p⊥π)

single spin effects in TMDs

Only one large scale, PT. Any role for TMDs? 
TMD factorization not proven  



U. D’Alesio, F. Murgia

E704 data STAR data

fit prediction
p p→ π XSivers effect 

TMD factorization at work ....



2. Higher-twist partonic correlations    
(Efremov, Teryaev; Qiu, Sterman; Kouvaris, Vogelsang, Yuan; 

Bacchetta, Bomhof, Mulders, Pijlman; Koike ... ) 

d∆σ ∝
∑

a,b,c

Ta(k1, k2,S⊥)⊗ fb/B(xb)⊗Hab→c(k1, k2)⊗Dh/c(z)

twist-3 functions hard interaction, 
not a cross section

higher-twist partonic correlations - factorization OK  

(Ta ∝ f⊥(1)
1T )

possible project: compute Ta using SIDIS extracted Sivers 
functions 



fits of E704 and STAR data 
Kouvaris, Qiu, Vogelsang, Yuan



sign mismatch 
(Kang, Qiu, Vogelsang, Yuan) 

4

into non-perturbative PDFs, FFs, or the correlation functions. Consequently, unlike for the TMD distributions, all
field operators defining the non-perturbative functions in the collinear factorization approach are evaluated at the
same light-cone separation with zero “+” and “⊥” components, as shown for example in Eq. (8).
Since the quark-gluon correlation functions in the collinear factorization approach have all their active partons’

transverse momenta integrated, these correlation functions can be related to k⊥-moments of the TMD parton distri-
bution functions. It was shown at the operator level [23, 33, 36] that the ETQS function Tq,F (x, x) is closely related
to the k⊥-moment of Sivers function:

gTq,F (x, x) = −
∫

d2k⊥
|k⊥|2
M

f⊥q
1T (x, k2⊥)|SIDIS (10)

where the subscript “SIDIS” emphasizes that the Sivers functions here are probed in the SIDIS process. We stress
again the importance of the sign convention for the coupling constant g in the definition of the gauge link. If the sign
convention used to define Tq,F (x, x) is different from that in the definition of f⊥q

1T (x, k2⊥), the difference will introduce
an extra factor “−1” in the relation between these two functions, so that there will be no minus sign on the right-hand
side of Eq. (10).
We emphasize that the operator definition in Eq. (8) does not completely fix the quark-gluon correlation function

Tq,F (x, x), unless the renormalization scheme is specified. As is well known from the case of ordinary PDFs, the matrix
element in Eq. (8) is ultraviolet (UV) divergent [39]. Like in the case of PDFs, the quark-gluon correlation function
is really defined in terms of the QCD factorization formalism. The leading UV divergent (the large k⊥) region of the
matrix element on the right-hand-side of Eq. (8) corresponds to the region of phase space with large parton virtuality,
and is required by factorization to be moved from the matrix element into the perturbatively calculated short-distance
functions. The removal or subtraction of the UV divergence is not unique, which leads to the factorization scheme
and scale (µ) dependence of the correlation functions Tq,F (x, x, µ) [40]. In this way, also the relation in Eq. (10) is
subject to the UV subtractions and the adopted factorization scheme, and hence not a unique identity. That said, the
relation (10) provides a natural “zeroth-order” connection between the Sivers and the ETQS functions. It plays an
important role in establishing the consistency between the TMD factorization approach and the collinear twist-three
quark-gluon correlation approach in the descriptions of the SSAs in SIDIS and the Drell-Yan process [33]. It also is a
useful starting point for phenomenological studies and is of much help in testing the various constraints on the quark
Sivers and quark-gluon correlation functions. In the following, we will therefore make use of relation (10), keeping
however in mind the caveats we have made regarding UV renormalization.

III. THE “SIGN MISMATCH”

The quark Sivers functions f⊥q
1T (x, k2⊥) (or equivalently, ∆Nfq/A↑(x, k⊥)) and the twist-3 quark-gluon correlation

functions Tq,F (x, x) have been extracted from experimental data on SSAs for single hadron production in SIDIS and
in hadron-hadron scattering, respectively. In this section, we compare the existing parameterizations of these two
functions and present our findings concerning the “sign mismatch”. We also introduce and discuss various loopholes
that might resolve the apparent inconsistency.

So far the quark Sivers functions have been extracted from the Asin(φh−φs)
UT azimuthal asymmetries in SIDIS. We

consider two such parametrizations here. One is from Ref. [10] (we refer it as “old Sivers”), the other one (“new Sivers”)
from Ref. [11] . They both parametrize the spin-averaged TMD PDFs f q

1 (x, k
2
⊥) and Sivers functions ∆Nfq/h↑(x, k⊥)

for each quark flavor q in the form

f q
1 (x, k

2
⊥) = f q

1 (x)g(k⊥), (11)

∆Nfq/h↑(x, k⊥) = 2Nq(x)f
q
1 (x)h(k⊥)g(k⊥), (12)

where f q
1 (x) is the quark’s spin-averaged collinear PDF,Nq(x) is a fitted function whose functional form is not relevant

for our discussion below, and g(k⊥) is assumed to have a Gaussian form,

g(k⊥) =
1

π〈k2⊥〉
e−k2

⊥/〈k2
⊥〉 (13)

with a fitting parameter 〈k2⊥〉 for the width. However, the two parameterizations adopt different functional forms for
the k⊥-dependence of the Sivers function:

old Sivers: h(k⊥) =
2k⊥M0

k2⊥ +M2
0

, (14)

new Sivers: h(k⊥) =
√
2e

k⊥
M1

e−k2
⊥/M2

1 , (15)

compare

as extracted from fitting AN data, with that obtained by 
inserting in the the above relation the SIDIS extracted 

Sivers functions

similar magnitude, but opposite sign!  
the same mismatch does not occurr adopting 

TMD factorization; the reason is that the hard 
scattering part in higher-twist factorization is 

negative  



p p

Q2 = M2

qT

qL

l+

l–

dσD−Y =
∑

a

fq(x1,k⊥1;Q2)⊗ fq̄(x2,k⊥2;Q2) dσ̂qq̄→!+!−

TMDs in Drell-Yan processes               

factorization holds, two scales, M2, and qT << M

direct product of TMDs,  no fragmentation process
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l′µCM =
1

2

















(

1 − sinα sin θCS cosφCS

)

q0,CM − cosα cos θCS qL,CM

qT − (cosα)−1 sin θCS cosφCS q

− sin θCS sinφCS q
(

1 − sinα sin θCS cosφCS

)

qL,CM − cosα cos θCS q0,CM

















. (54)

By means of these momenta one can carry out the contraction of the leptonic and the hadronic tensor in the
cm-frame. This is particularly convenient in connection with the parton model calculation in Section VI.

We close this section with a brief discussion on the hadron spin vectors. In the cm-frame one can write

Sµ
a,CM =

(

SaL,CM
|$Pa,CM |

Ma
, |$SaT,CM | cosφa,CM , |$SaT,CM | sinφa,CM , SaL,CM

P 0
a,CM

Ma

)

, (55)

Sµ
b,CM =

(

SbL,CM
|$Pb,CM |

Mb
, |$SbT,CM | cosφb,CM , |$SbT,CM | sinφb,CM , −SbL,CM

P 0
b,CM

Mb

)

, (56)

with the longitudinal components SaL,CM , SbL,CM , and the transverse components $SaT,CM , $SbT,CM . The condi-

tion S2
a = −1 implies (SaL,CM)2 +($SaT,CM )2 = 1 (and analogously for the hadron Hb). One can also write down,

e.g., Sµ
a in the CS-frame in terms of longitudinal and transverse components.4 Mainly for the following reason

we prefer, however, to work with components of the spin vectors in the cm-frame. If one has a pure transverse
polarization in the cm-frame (in the xz-plane), this implies also a longitudinal polarization component in the CS-
frame. Therefore, longitudinal and transverse polarization components can get mixed up when switching between
both frames. Since an experimental setup and also the parton model approximation have a closer connection to
the cm-frame than to the CS-frame it is preferable to work with cm-frame components of the hadron spin vectors.

V. ANGULAR DISTRIBUTION OF THE CROSS SECTION

By means of the general form of the hadronic tensor as derived in Section III one can now write down the full
angular distribution of the DY cross section. Since the hadronic tensor is frame-independent this can be done,
in principle, for any reference frame. We focus here on a dilepton rest frame because in that case the angular
distribution takes the most compact and transparent form. Expressing the orientation of the leptons through the
CS-angles θCS and φCS (see Eqs. (51), (52), and (53), (54)) and contracting the leptonic tensor in (5) with the
hadronic tensor one finds the following general form of the cross section in Eq. (10):

dσ

d4q dΩ
=

α2
em

F q2
×

{(

(1 + cos2 θ)F 1
UU + (1 − cos2 θ)F 2

UU + sin 2θ cosφF cos φ
UU + sin2 θ cos 2φF cos 2φ

UU

)

+ SaL

(

sin 2θ sinφF sin φ
LU + sin2 θ sin 2φF sin 2φ

LU

)

+ SbL

(

sin 2θ sinφF sin φ
UL + sin2 θ sin 2φF sin 2φ

UL

)

+ |$SaT |
[

sinφa

(

(1 + cos2 θ)F 1
TU + (1 − cos2 θ)F 2

TU + sin 2θ cosφF cos φ
TU + sin2 θ cos 2φF cos 2φ

TU

)

+ cosφa

(

sin 2θ sinφF sin φ
TU + sin2 θ sin 2φF sin 2φ

TU

)]

+ |$SbT |
[

sinφb

(

(1 + cos2 θ)F 1
UT + (1 − cos2 θ)F 2

UT + sin 2θ cosφF cos φ
UT + sin2 θ cos 2φF cos 2φ

UT

)

+ cosφb

(

sin 2θ sinφF sin φ
UT + sin2 θ sin 2φF sin 2φ

UT

)]

+ SaL SbL

(

(1 + cos2 θ)F 1
LL + (1 − cos2 θ)F 2

LL + sin 2θ cosφF cos φ
LL + sin2 θ cos 2φF cos 2φ

LL

)

4 The resulting expression looks a bit more complicated because !Pa,CS is not pointing in the z-direction.
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+ SaL |!SbT |
[

cosφb

(

(1 + cos2 θ)F 1
LT + (1 − cos2 θ)F 2

LT + sin 2θ cosφF cos φ
LT + sin2 θ cos 2φF cos 2φ

LT

)

+ sinφb

(

sin 2θ sinφF sin φ
LT + sin2 θ sin 2φF sin 2φ

LT

)]

+ |!SaT |SbL

[

cosφa

(

(1 + cos2 θ)F 1
TL + (1 − cos2 θ)F 2

TL + sin 2θ cosφF cos φ
TL + sin2 θ cos 2φF cos 2φ

TL

)

+ sinφa

(

sin 2θ sinφF sin φ
TL + sin2 θ sin 2φF sin 2φ

TL

)]

+ |!SaT | |!SbT |
[

cos(φa + φb)
(

(1 + cos2 θ)F 1
TT + (1 − cos2 θ)F 2

TT + sin 2θ cosφF cos φ
TT + sin2 θ cos 2φF cos 2φ

TT

)

+ cos(φa − φb)
(

(1 + cos2 θ) F̄ 1
TT + (1 − cos2 θ) F̄ 2

TT + sin 2θ cosφ F̄ cos φ
TT + sin2 θ cos 2φ F̄ cos 2φ

TT

)

+ sin(φa + φb)
(

sin 2θ sinφF sin φ
TT + sin2 θ sin 2φF sin 2φ

TT

)

+ sin(φa − φb)
(

sin 2θ sinφ F̄ sin φ
TT + sin2 θ sin 2φ F̄ sin 2φ

TT

)]}

. (57)

In Eq. (57) 48 structure functions show up which exactly matches with the number of the Vi defined in Section III.
The structure functions again depend on the three variables Pa ·q, Pb ·q, and q2, i.e., F 1

UU = F 1
UU (Pa ·q, Pb ·q, q2)

and so on. We refrain from giving the explicit relations between the structure functions in (57) and the Vi because
these lengthy formulae are not needed for the following discussion. In order to shorten the notation in (57) we left
out indices for the angles which characterize the lepton momenta and the transverse spin vectors of the hadrons.
There is yet another reason for omitting those indices: the form of the angular distribution in (57) holds for
any dilepton rest frame and not just the CS frame. The numerical values of the structure functions of course
change when going from one frame to another. Furthermore, note that the components of the spin vectors can be
understood in different frames like the rest frame of one of the hadrons, the cm-frame, or a dilepton rest frame.

In particular for the angular distribution of the unpolarized cross section different notations can be found in
the literature (see, e.g., [35] and references therein). Here we just quote the frequently used formula

dN

dΩ
≡

dσ

d4q dΩ

/

dσ

d4q
=

3

4π

1

λ + 3

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

. (58)

One readily finds

λ =
F 1

UU − F 2
UU

F 1
UU + F 2

UU

, µ =
F cos φ

UU

F 1
UU + F 2

UU

, ν =
2 F cos 2φ

UU

F 1
UU + F 2

UU

. (59)

The socalled Lam-Tung relation [33, 34, 37]

λ + 2ν = 1 , (60)

which in terms of the structure functions defined in (57) reads

F 2
UU = 2 F cos 2φ

UU , (61)

has attracted considerable attention in the past. This relation is exact if one computes the DY process to
O(αs) in the standard collinear perturbative QCD framework. Even at O(α2

s) the numerical violation of (60) is
small [38]. On the other hand data for π− N → µ− µ+ X taken at CERN [39, 40] and at Fermilab [41] are in
disagreement with the Lam-Tung relation. In particular, an unexpectedly large cos 2φ modulation of the cross
section was observed, and in the meantime different explanations for this phenomenon have been put forward in
the literature [42, 43, 44, 45, 46, 47, 48]. In Ref. [31] it was pointed out that intrinsic transverse motion of initial
state partons might be responsible for the observed violation of the Lam-Tung relation. In the following section
we will briefly return to this point in connection with the parton model calculation. It is also worthwhile to
mention that more recent Fermilab data on proton-deuteron Drell-Yan do agree with the Lam-Tung relation [49].

The hadronic tensor given in Section III also allows one to find the angular distribution of the cross section for
the specific kinematical point qT = 0. Altogether, in that case one has nine independent angular dependences
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+ SaL |!SbT |
[

cosφb

(

(1 + cos2 θ)F 1
LT + (1 − cos2 θ)F 2

LT + sin 2θ cosφF cos φ
LT + sin2 θ cos 2φF cos 2φ

LT

)

+ sinφb

(

sin 2θ sinφF sin φ
LT + sin2 θ sin 2φF sin 2φ

LT

)]

+ |!SaT |SbL

[

cosφa

(

(1 + cos2 θ)F 1
TL + (1 − cos2 θ)F 2

TL + sin 2θ cosφF cos φ
TL + sin2 θ cos 2φF cos 2φ

TL

)

+ sinφa

(

sin 2θ sinφF sin φ
TL + sin2 θ sin 2φF sin 2φ

TL

)]

+ |!SaT | |!SbT |
[

cos(φa + φb)
(

(1 + cos2 θ)F 1
TT + (1 − cos2 θ)F 2

TT + sin 2θ cosφF cos φ
TT + sin2 θ cos 2φF cos 2φ

TT

)

+ cos(φa − φb)
(

(1 + cos2 θ) F̄ 1
TT + (1 − cos2 θ) F̄ 2

TT + sin 2θ cosφ F̄ cos φ
TT + sin2 θ cos 2φ F̄ cos 2φ

TT

)

+ sin(φa + φb)
(

sin 2θ sinφF sin φ
TT + sin2 θ sin 2φF sin 2φ

TT

)

+ sin(φa − φb)
(

sin 2θ sinφ F̄ sin φ
TT + sin2 θ sin 2φ F̄ sin 2φ

TT

)]}

. (57)

In Eq. (57) 48 structure functions show up which exactly matches with the number of the Vi defined in Section III.
The structure functions again depend on the three variables Pa ·q, Pb ·q, and q2, i.e., F 1

UU = F 1
UU (Pa ·q, Pb ·q, q2)

and so on. We refrain from giving the explicit relations between the structure functions in (57) and the Vi because
these lengthy formulae are not needed for the following discussion. In order to shorten the notation in (57) we left
out indices for the angles which characterize the lepton momenta and the transverse spin vectors of the hadrons.
There is yet another reason for omitting those indices: the form of the angular distribution in (57) holds for
any dilepton rest frame and not just the CS frame. The numerical values of the structure functions of course
change when going from one frame to another. Furthermore, note that the components of the spin vectors can be
understood in different frames like the rest frame of one of the hadrons, the cm-frame, or a dilepton rest frame.

In particular for the angular distribution of the unpolarized cross section different notations can be found in
the literature (see, e.g., [35] and references therein). Here we just quote the frequently used formula

dN

dΩ
≡

dσ

d4q dΩ

/

dσ

d4q
=

3

4π

1

λ + 3

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

. (58)

One readily finds

λ =
F 1

UU − F 2
UU

F 1
UU + F 2

UU

, µ =
F cos φ

UU

F 1
UU + F 2

UU

, ν =
2 F cos 2φ

UU

F 1
UU + F 2

UU

. (59)

The socalled Lam-Tung relation [33, 34, 37]

λ + 2ν = 1 , (60)

which in terms of the structure functions defined in (57) reads

F 2
UU = 2 F cos 2φ

UU , (61)

has attracted considerable attention in the past. This relation is exact if one computes the DY process to
O(αs) in the standard collinear perturbative QCD framework. Even at O(α2

s) the numerical violation of (60) is
small [38]. On the other hand data for π− N → µ− µ+ X taken at CERN [39, 40] and at Fermilab [41] are in
disagreement with the Lam-Tung relation. In particular, an unexpectedly large cos 2φ modulation of the cross
section was observed, and in the meantime different explanations for this phenomenon have been put forward in
the literature [42, 43, 44, 45, 46, 47, 48]. In Ref. [31] it was pointed out that intrinsic transverse motion of initial
state partons might be responsible for the observed violation of the Lam-Tung relation. In the following section
we will briefly return to this point in connection with the parton model calculation. It is also worthwhile to
mention that more recent Fermilab data on proton-deuteron Drell-Yan do agree with the Lam-Tung relation [49].

The hadronic tensor given in Section III also allows one to find the angular distribution of the cross section for
the specific kinematical point qT = 0. Altogether, in that case one has nine independent angular dependences

Dre
ll-Y

an
    

    
    

    
    

                   

48
 st

ru
ctu

re
 fu

nc
tio

ns
 ...

S. Arnold, A. Metz and M. Schlegel, arXiv:0809.2262 [hep-ph] 
cross-section: most general pp leading-twist expression 



q = u, ū, d, d̄, s, s̄

dσ↑ − dσ↓ ∝
∑

q

∆Nfq/p↑(x1,k⊥)⊗ fq̄/p(x2)⊗ dσ̂

Sivers effect in D-Y processes 

By looking at the d4σ/d4q cross section one can 
single out the Sivers effect in D-Y processes     

A
sin(φS−φγ)
N ≡

2
∫ 2π
0 dφγ [dσ↑ − dσ↓] sin(φS − φγ)

∫ 2π
0 dφγ [dσ↑ + dσ↓]

p p
qT

qL

(p-p c.m. frame) 
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Predictions for AN 
Sivers functions as extracted  from SIDIS data, with opposite sign 

M.A., M. Boglione, U. D’Alesio, S. Melis, F. Murgia, A. Prokudin, e-Print: arXiv:0901.3078 
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Conclusions

The3-dimensional exploration of the nucleon has just 
started: collect as much data as possible and try to 

reconstruct the nucleon phase-space structure                           

The properties of the Sivers function and its 
different role in different processes, have 

to be investigated 

TMDs describe the momentum distribution; the 
actual knowledge covers limited kinematical 

regions, and assumes (too) simple functional forms

and much more to do .....


