TMDs and the 3-dimensional momentum structure of the nucleon

[Fall meeting of the GDR PH-QCD: nucleon and](http://indico.in2p3.fr/conferenceDisplay.py?confId=5869) [nucleus structure studies with a LHC fixed-target](http://indico.in2p3.fr/conferenceDisplay.py?confId=5869) [experiment and electron-ion colliders](http://indico.in2p3.fr/conferenceDisplay.py?confId=5869)

Mauro Anselmino, Torino University & INFN - Oct. 21, 2011

 $\mathcal{F}(\mathbf{r}, \mathbf{r})$. Repairing the projection of the given $\mathcal{F}(\mathbf{r})$ is an factors. *C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)* Lorcé, Pasquini, Vanderhaeghen, Lorcé talk

courtesy of A. Bacchetta

*

information on TMDs

SIDIS:

k⊥ dependence of unpolarized partonic distributions (Cahn effect) Sivers distribution Collins fragmentation and transversity model (+ data) computation of J_q role of intrinsic motion in other processes: D-Y processes A_N in pp $\rightarrow h + X$

••••••••

TMDs in SIDIS

(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz)

TMDs: the leading-twist correlator, with intrinsic k*┴*, contains 8 independent functions

The nucleon at twist-2

$$
\frac{d\sigma}{d\phi} = F_{UU} + \cos(2\phi) F_{UU}^{\cos(2\phi)} + \frac{1}{Q} \cos\phi F_{UU}^{\cos\phi} + \lambda \frac{1}{Q} \sin\phi F_{LU}^{\sin\phi} \n+ S_L \left\{ \sin(2\phi) F_{UL}^{\sin(2\phi)} + \frac{1}{Q} \sin\phi F_{UL}^{\sin\phi} + \lambda \left[F_{LL} + \frac{1}{Q} \cos\phi F_{LL}^{\cos\phi} \right] \right\} \n+ S_T \left\{ \sin(\phi - \phi_S) F_{UT}^{\sin(\phi - \phi_S)} + \sin(\phi + \phi_S) F_{UT}^{\sin(\phi + \phi_S)} + \sin(3\phi - \phi_S) F_{UT}^{\sin(3\phi - \phi_S)} \right. \n+ \frac{1}{Q} \left[\sin(2\phi - \phi_S) F_{UT}^{\sin(2\phi - \phi_S)} + \sin\phi_S F_{UT}^{\sin\phi_S} \right] \n+ \lambda \left[\cos(\phi - \phi_S) F_{LT}^{\cos(\phi - \phi_S)} + \frac{1}{Q} \left(\cos\phi_S F_{LT}^{\cos\phi_S} + \cos(2\phi - \phi_S) F_{LT}^{\cos(2\phi - \phi_S)} \right) \right] \right\}
$$

Kotzinian, **NP B441** (1995) 234 Mulders and Tangermann, **NP B461** (1996) 197 Boer and Mulders, **PR D57** (1998) 5780 Bacchetta et al., **PL B595** (2004) 309 Bacchetta et al., **JHEP 0702** (2007) 093 Anselmino et al., arXiv:1101.1011 [hep-ph]

LEPTON SCATTERING PLANE

the
$$
F_{S_B S_T}^{(...)}
$$
 contain the TMS

 $f \otimes D \thicksim$ $d^2\boldsymbol{k}_\perp d^2\boldsymbol{p}_\perp\,\delta^{(2)}(\boldsymbol{P}_T-z_h\boldsymbol{k}_\perp-\boldsymbol{p}_\perp)\,w(\boldsymbol{k}_\perp,\boldsymbol{P}_T)\,f(x_B,k_\perp)\,D\,(z_h,p_\perp)$

M.A., M. Boglione, U. D'Alesio, A. Kotzinian, F. Murgia and A. Prokudin

CLAS data arXiv:. 0809.1153v5, PRD 80,032004 (2009) $d^5\sigma$ $dx dQ^2 dz dP_T^2 d\phi$ $= C \left[\epsilon \mathcal{H}_1 + \mathcal{H}_2 + A \cos \phi + B \cos(2\phi) \right]$

Schweitzer, Teckentrup, Metz, arXiv:1003.2190 dence in tavor ot gaussian dependence to the data function of Q2 executive and solid line intervention, $\frac{1}{2}$ evidence in favor of gaussian dependence

"Cahn modulation" - proton vs. deuteron

Boglione, Melis, Prokudin, PRD 84 (2011) 034033

the azimuthal dependence induced by intrinsic motion is clearly observed phenomenolgical analysis and data need much improvement

Gaussian k⊥ distribution of TMDs? $\langle k_\perp^2 \rangle (x, Q^2) \quad \langle p_\perp^2 \rangle (z, Q^2)$

> x, z dependence? flavour dependence? energy dependence? k_⊥ dependence of Δq vs. q?

more data covering wider kinematical ranges

Siver function phenomenology in SIDIS

[M.Anselmino,](http://arxiv.org/find/hep-ph/1/au:+Anselmino_M/0/1/0/all/0/1) [M.Boglione,](http://arxiv.org/find/hep-ph/1/au:+Boglione_M/0/1/0/all/0/1) [J.C.Collins,](http://arxiv.org/find/hep-ph/1/au:+Collins_J/0/1/0/all/0/1) [U.D'Alesio,](http://arxiv.org/find/hep-ph/1/au:+DAlesio_U/0/1/0/all/0/1) [A.V.Efremov,](http://arxiv.org/find/hep-ph/1/au:+Efremov_A/0/1/0/all/0/1) [K.Goeke,](http://arxiv.org/find/hep-ph/1/au:+Goeke_K/0/1/0/all/0/1) [A.Kotzinian,](http://arxiv.org/find/hep-ph/1/au:+Kotzinian_A/0/1/0/all/0/1) [S.Menzel,](http://arxiv.org/find/hep-ph/1/au:+Menzel_S/0/1/0/all/0/1) [A.Metz,](http://arxiv.org/find/hep-ph/1/au:+Metz_A/0/1/0/all/0/1) [F.Murgia,](http://arxiv.org/find/hep-ph/1/au:+Murgia_F/0/1/0/all/0/1) [A.Prokudin,](http://arxiv.org/find/hep-ph/1/au:+Prokudin_A/0/1/0/all/0/1) [P.Schweitzer,](http://arxiv.org/find/hep-ph/1/au:+Schweitzer_P/0/1/0/all/0/1) [W.Vogelsang,](http://arxiv.org/find/hep-ph/1/au:+Vogelsang_W/0/1/0/all/0/1) [F.Yuan,](http://arxiv.org/find/hep-ph/1/au:+Yuan_F/0/1/0/all/0/1) A. Bacchetta, M. Radici

$$
P_{UT}^{\sin(\phi-\phi_S)}
$$

$$
2\langle\sin(\phi-\phi_S)\rangle = A_{UT}^{\sin(\phi-\phi_S)} \equiv 2 \frac{\int d\phi d\phi_S (d\sigma^\uparrow - d\sigma^\downarrow) \sin(\phi-\phi_S)}{\int d\phi d\phi_S (d\sigma^\uparrow + d\sigma^\downarrow)}
$$

extraction of Sivers function based on very simple parameterization, with x and **k**⊥ factorization. Typically:

$$
\Delta^N f_{q/p\uparrow}(x,k_\perp) = -\frac{2k_\perp}{M} f_{1T}^{\perp q}(x,k_\perp) = N x^\alpha (1-x)^\beta \, h(k_\perp) f_{q/p}(x,k_\perp)
$$
 with

$$
f_{q/p}(x,k_{\perp}) = f_q(x) \frac{1}{\pi \langle k_{\perp}^2 \rangle} e^{-k_{\perp}^2 / \langle k_{\perp}^2 \rangle} \qquad \frac{\langle k_{\perp}^2 \rangle \text{ constant andflavour independent}
$$

simple Sivers functions for u and d quarks are sufficient to fit the available SIDIS data large and very small x dependence not constrained by data

similar results from other groups

S. Melis, talk at Transversity 2011

S. Melis, talk at Transversity 2011

2010 vs 2007 data the Sivers asymmetry

Franco Bradamante

COMPASS

the Sivers asymmetry 2010 data

$x > 0.032$ region - comparison with HERMES results

JLab - Hall A

³He Target Single-Spin Asymmetry in SIDIS

arXiv: 1106.0363, submitted to PRL

Red band: other systematic uncertainties

Results on Neutron

Blue band: model (fitting) uncertainties Red band: other systematic uncertainties

Aghasyan talk at Transversity 2011

azimuthal dependences from target fragmentation region (fracture functions)

CFR

azimuthal modulations in TFR

(M.A, V. Barone, A. Kotzinian, PL B699 (2011) 108)

cross section for lepto-production of an unpolarized or eninless hadron in the TFR \mathcal{L}_{F} that the cross section for the cross section for the cross section for this process is process is process in spinless hadron in the TFR

$$
\frac{d\sigma^{TFR}}{dx_B dy d\zeta d^2 \mathbf{P}_{h\perp} d\phi_S} = \frac{2\alpha_{em}^2}{Q^2 y} \left\{ \left(1 - y + \frac{y^2}{2} \right) \times \sum_a e_a^2 \left[M(x_B, \zeta, \mathbf{P}_{h\perp}^2) - |\mathbf{S}_{\perp}| \frac{|\mathbf{P}_{h\perp}|}{m_h} M_T^h(x_B, \zeta, \mathbf{P}_{h\perp}^2) \frac{\sin(\phi_h - \phi_S)}{\phi} \right] \times \lambda_l y \left(1 - \frac{y}{2} \right) \sum_a e_a^2 \left[S_{\parallel} \Delta M_L(x_B, \zeta, \mathbf{P}_{h\perp}^2) + |\mathbf{S}_{\perp}| \frac{|\mathbf{P}_{h\perp}|}{m_h} \Delta M_T^h(x_B, \zeta, \mathbf{P}_{h\perp}^2) \cos(\phi_h - \phi_S) \right] \right\}.
$$

possible Sivers-like azimuthal dependence from target fragmentation region $\overline{1}$

Sivers effect now observed by two experiments (+ Hall-A AUT on neutrons), but needs further measurements

great improvement in study of QCD evolution (Aybat, Rogers, arXiv:1101.5057)

Q² of data not so high, role of higher twists? clear separation of TFR and CFR needed... more sophisticated parameterization... universality of Sivers function?...

Collins effect in SIDIS - $F_{UT}^{\sin(\phi+\phi_S)}$

$$
D_{h/q, \mathbf{S}_q}(z, \mathbf{p}_{\perp}) = D_{h/p}(z, p_{\perp}) +
$$
\n
$$
\frac{1}{2} \underbrace{\Delta^N D_{h/q^{\uparrow}}(z, p_{\perp}) \mathbf{s}_q \cdot (\hat{\mathbf{p}}_q \times \hat{\mathbf{p}}_{\perp})}_{\mathbf{d}\sigma^{\uparrow} - d\sigma^{\downarrow}} = \underbrace{\sum_{q} h_{1q}(x, k_{\perp}) \otimes d\Delta \hat{\sigma}(y, \mathbf{k}_{\perp}) \otimes \Delta^N D_{h/q^{\uparrow}}(z, \mathbf{p}_{\perp})}_{\mathbf{A}_{UT}^{\sin(\phi + \phi_S)} \equiv 2 \frac{\int d\phi \, d\phi_S \, [d\sigma^{\uparrow} - d\sigma^{\downarrow}] \sin(\phi + \phi_S)}{\int d\phi \, d\phi_S \, [d\sigma^{\uparrow} + d\sigma^{\downarrow}]}
$$
\n
$$
d\Delta \hat{\sigma} = d\hat{\sigma}^{\ell q^{\uparrow} \rightarrow \ell q^{\uparrow}} - d\hat{\sigma}^{\ell q^{\uparrow} \rightarrow \ell q^{\downarrow}}
$$

Collins effect in SIDIS couples to transversity

BELLE @ KEK independent information on Collins function from ete processes

$$
A_{12}(z_1, z_2, \theta, \varphi_1 + \varphi_2) \equiv \frac{1}{\langle d\sigma \rangle} \frac{d\sigma^{e^+e^- \to h_1 h_2 X}}{dz_1 dz_2 d \cos\theta d(\varphi_1 + \varphi_2)}
$$

= $1 + \frac{1}{4} \frac{\sin^2 \theta}{1 + \cos^2 \theta} \cos(\varphi_1 + \varphi_2) \times \frac{\sum_q e_q^2 \Delta^N D_{h_1/q}(\varphi_1)}{\sum_q e_q^2 D_{h_1/q}(\varphi_1) D_{h_2/q}(\varphi_2)}$

extracted Collins functions

M.A., M. Boglione, U. D'Alesio, A. Kotzinian, S. Melis, F. Murgia, A. Prokudin, C. Türk

best fit of HERMES data

$\textcolor{red}{\bullet}$ Update on the collins functions functions functions functions for data $\textcolor{red}{\bullet}$ best fit of COMPASS and BELLE data

Collins asymmetry 2010 vs 2007 data

COMPAS

Collins asymmetry 2010 data

$x > 0.032$ region - comparison with HERMES results

Transverity2011

Franco Bradamante

1. start from D1q=u,s,c(z,Mh; Q02=1), H1<)u(z,Mh; Q02=1) Bacchetta & Radici, P.R.D**74** (06) results recently confirmed by extraction based on coupling of transversity with di-hadron fragmentation $\frac{1}{2}$ function (STNTS + RFLLE data) $\frac{1}{1}$ function (SIDIS + BELLE data)

\$(Q2)/nu(Q2): Q2=2.5 GeV2 nu \$/nu= -0.251±0.006ex±0.023th Bacchetta, Radici P.R.L. **107** (2011)

martedì 30 agosto 2011

M. Radici, talk at Transversity 2011

Figure 4.2. The isosinglet moment $B_{20}^{u+d}(t)$ as a function of simulated pion mass and t [604]. $\sum_{a}e_{q}$ $\int_{0}^{a}dx E^{q} (x,0,0) = \kappa$ $E_{20}^{\mu + d}$ 0.0 \rightarrow \sim (1), we can compute the total angular compute the total angular compute the total angular compute the total angular computation of the total angular computation of the total angular computation $\log_e e_{qv}$ dx $F^{q_v}(x,0,0) = \kappa$ $\frac{1}{\sqrt{2}}$ $J^u = 0.266 \pm 0.009$ $\|$ $\|$ $J^d = -0.012 \pm 0.003^{+0.024}_{-0.006}$, $J^{\bar d_{0.2_\text{mf}}}\oplus 0.22 \pm 0.006^{+0.001}_{-0.000},$ $J^s = 0.005^{+0.000}_{-0.007}$, $J^{\bar{s}} = 0.004^{+0.000}_{-0.005}$.
Straint isosinglet moment $B^{u+d}_{30}(t)$ as a function of simulated pion n $\mathcal{A} = \mathcal{A}$ \mathcal{I}^2 $Q^2 = 1$ GeV² is there a quantitative link between the Sivers distribution and orbital angular momentum? Bacchetta, Radici, arXiv:1107.5755 with model assumption $f_{1T}^{\perp (0) a} (x; Q_L^2) = - L(x) \, E^a (x, 0, 0; Q_L^2)$ $fix E^q$ and f_{1T}^{\perp} best fitting SIDIS data on Sivers asymmetry and the pucleon magnetic moments ⊥ TI. *q* e_{qv}^{\frown} **"** 0 $dx F^{q_v}(x,0,0) = \kappa$ *a* $\frac{1}{2}$ *a* $\frac{1}{2}$ and orbital angular momentum? Racchetta Dadici anXiv:11075755 $\sum_{i=1}^{n}$ $J^{a}(Q^{2}) = \frac{1}{2}$ 2 \int_0^1 0 $dx x \left(H^a(x, 0, 0; Q^2) + E^a(x, 0, 0; Q^2)\right)$ \setminus (1) f^{\perp} ($\sqrt{f^{\prime}$, f^{\prime} , τ ith dividing stots data on Sivers asymmetry $B_{20}^{\mu+d}$ 0.0 $\sum e_a$ function $E^{q_v}(x,0,0) = \kappa$ $\frac{22}{a}$. In is possible to probe the function $\frac{1}{a}$ experiments, but never in the forward limit (see, e.g., $J^{\bar{u}} = 0.014 \pm 0.004 \pm 0.001 \ 0.000$ $-\frac{69.014}{62}$
 $\sqrt{402}$
 $\sqrt{202}$ $0.012 \pm 0.003^{+0.000}_{-0.000}$. $J^* = 0.022 \pm 0.000^{+0.000}_{-0.000}$ her
istr
del
E^q d use sum rule usual PDF

 $\omega = 1$ (*x*) ω

with existing data, and we derive estimates of *J^a*.

Transversity & Collins function phenomenology in SIDIS and e+e-

Same simple parametrization as for Sivers, but Collins effect has been clearly observed by three independent experiments: HERMES, COMPASS and BELLE

Collins function expected to be universal

QCD evolution important, as BELLE data are at a much higher energy than SIDIS data

A_N in p p $\rightarrow \pi X$, the big challenge **BNL, ANL, Fermilab, Serpukhov**

 $A_N \equiv$ $d\sigma^{\uparrow}-d\sigma^{\uparrow}$ $d\sigma^\uparrow + d\sigma^\uparrow$ $A_N \equiv -$

 $E704$ $Js = 20$ GeV $0.7 < p_T < 2.0$

and all becuttiful RHIC data, persisting at and all beautiful RHIC data, persisting at high energy... <u>∂ ∂ ∂ d</u> → *do* $A_N \equiv \frac{d\mathbf{a} \cdot \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{a}}{d\sigma^{\uparrow} + d\sigma^{\uparrow}}$ 0.7 × $R_T \leq \frac{2}{n}$ $d\sigma^{\uparrow} + d\sigma^{\uparrow}$ Systematic errors potentially arise from several sources. 0.15 $\overline{x_{\mathsf{F}} > 0.4}$ $0 x_{\rm F} < -0.4$ 0.1 A_{N} 0.05 $\overline{\mathbf{I}}$ ᠆ᠯ᠁᠇᠃᠖᠃ᢀ᠃᠑᠁᠐᠁
ᢅᢩ᠙ $\overline{0}$ Ī
? -0.05 1.5 2.5 $\overline{3}$ 3.5 $\overline{\mathbf{1}}$ $\overline{2}$ $\overline{4}$ p_T , GeV/c

(Field-Feynman in unpolarized case) M.A., M. Boglione, U. D'Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, ...

U. D'Alesio, F. Murgia TMD factorization at work

possible project: compute Ta using SIDIS extracted Sivers functions

fits of E704 and STAR data Kouvaris, Qiu, Vogelsang, Yuan

sign mismatch (Kang, Qiu, Vogelsang, Yuan) $siam m$ in the correlations in the collinear factorization approach have all the collinear factorization approach have a structure partons in the collinear factorization approach have a structure partons in the collinear fact transverse momenta integrated, these correlations can be related to k⊥-moments of the TMD parton of the TMD par bution functions. It was shown at the operator operator in the ETQS function \mathcal{L}

compare

$$
gT_{q,F}(x,x) = -\int d^2k_\perp \frac{|k_\perp|^2}{M} f_{1T}^{\perp q}(x,k_\perp^2)|_{\text{SIDIS}}
$$

as extracted from fitting A_N data, with that obtained by inserting in the the above relation the SIDIS extracted Convention used to define the US is different functions Sivers functions

similar magnitude, but opposite sign!

The same mismatch does not occurr daopting
The complete in Eq. (8) does not contribute function T (WD) T (actorization). The reason is that the naraly T scattering part in nigher-twist factorization is is really definite in terms of the QCD factorization for the large k⊥) region for the large k⊥ the same mismatch does not occurr adopting TMD factorization; the reason is that the hard scattering part in higher-twist factorization is negative

TMDs in Drell-Yan processes

factorization holds, two scales, M², and $q_T \ll M$

$$
\mathrm{d}\sigma^{D-Y}=\sum_{a}f_q(x_1,\boldsymbol{k}_{\perp 1};Q^2)\otimes f_{\bar{q}}(x_2,\boldsymbol{k}_{\perp 2};Q^2)\,\mathrm{d}\hat{\sigma}^{q\bar{q}\rightarrow\ell^+\ell^-}
$$

direct product of TMDs, no fragmentation process

Cross-Section: most general pp leading-twist expression
\n
$$
\frac{d\sigma}{d^4q d\Omega} = \frac{\alpha_{sm}^2}{F q^2} \times 5. \text{ Arnold, } A. \text{ Metz and } M. \text{ Schlegel, arXiv:0809.2262 [hep-ph]}
$$
\n
$$
\left\{ \left((1 + \cos^2 \theta) F_{UU}^L + (1 - \cos^2 \theta) F_{UU}^2 + \sin^2 \theta \cos \phi F_{UU}^{\cos \phi} + \sin^2 \theta \cos 2\phi F_{UU}^{\cos 2\phi} \right) \right\}
$$
\n
$$
+ S_{aL} \left(\sin 2\theta \sin \phi F_{LU}^{\sin \phi} + \sin^2 \theta \sin 2\phi F_{UU}^{\sin 2\phi} \right)
$$
\n
$$
+ |S_{aL}| \left[\sin \phi_a \left((1 + \cos^2 \theta) F_{UU}^L + (1 - \cos^2 \theta) F_{UU}^2 + \sin^2 \theta \cos \phi F_{UU}^{\cos 2\phi} \right) \right]
$$
\n
$$
+ |S_{bL}| \left[\sin \phi_a \left((1 + \cos^2 \theta) F_{UU}^L + (1 - \cos^2 \theta) F_{UU}^2 + \sin^2 \theta \cos \phi F_{UU}^{\cos 2\phi} \right) \right]
$$
\n
$$
+ |S_{bL}| \left[\sin \phi_b \left((1 + \cos^2 \theta) F_{UU}^L + (1 - \cos^2 \theta) F_{UU}^2 + \sin^2 \theta \sin 2\phi \sum_{i=1}^{\infty} \sin
$$

Sivers effect in D-Y processes

By looking at the $d^4 \sigma / d^4 q$ cross section one can single out the Sivers effect in D-Y processes

$$
{\rm d}\sigma^\uparrow-{\rm d}\sigma^\downarrow\propto\sum_q\Delta^N f_{q/p^\uparrow}(x_1,\bm{k}_\perp)\otimes f_{\bar{q}/p}(x_2)\otimes{\rm d}\hat{\sigma}\\q=u,\bar{u},d,\bar{d},s,\bar{s}
$$

$$
A_N^{\sin(\phi_S - \phi_\gamma)} \equiv \frac{2\int_0^{2\pi} d\phi_\gamma \left[d\sigma^\uparrow - d\sigma^\downarrow \right] \sin(\phi_S - \phi_\gamma)}{\int_0^{2\pi} d\phi_\gamma \left[d\sigma^\uparrow + d\sigma^\downarrow \right]}
$$

Sivers functions as extracted from SIDIS data, with opposite sign Predictions for A_N 2.0<M<2.5 GeV 0.4 GeV Pierre de la Gregoria de la nr

M.A., M. Boglione, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin, e-Print: arXiv:0901.3078 panel) and M (central particles are (1) \pm 1) \pm 1) \pm 1) \pm 1) \pm 1) \pm 10 \pm 10 \pm 10 \pm

Conclusions

The3-dimensional exploration of the nucleon has just started: collect as much data as possible and try to reconstruct the nucleon phase-space structure

TMDs describe the momentum distribution; the actual knowledge covers limited kinematical regions, and assumes (too) simple functional forms

The properties of the Sivers function and its different role in different processes, have to be investigated

and much more to do