Polarization measurement of proton beams at RHIC

Carlos Muñoz Camacho

Institut de Physique Nucléaire, Orsay, IN2P3/CNRS

GDR PH-QCD Orsay, November 20 (2011)

Outline

- Motivation
- Polarization measurements
 - pC polarimeters
 - *H*-jet polarimeter
- Results and overview
- Possibilities at higher energy (LHC...)

Spin physics motivations

- Measure Δg
- Polarized quark PDFs (through W production and Drell-Yann)
- Quark transversity distributions (through transverse single-spin asymmetries)
- Physics beyond the SM (through new PV asymmetries, if observed)

Introduction

Polarized proton collisions at BNL

Introduction

Measuring beam polarization at RHIC

Beam polarization:

$$P_B = \frac{1}{A_p} \frac{N_L - N_R}{N_L + N_R}$$

 A_p : known (theory or experiment) analyzing power of the reaction

At RHIC:

- $eC \rightarrow eC$
- $ep \rightarrow ep$

in the CNI (Coulomb-Nuclear Interference) region:

 $0.001 < t < 0.01 (GeV/c)^2$

where $t = (p_{in} - p_{out})^2 = -2ME_{kin}$ is the momentum transfer

CNI region

High analyzing power, high cross-section, roughly independent of energy

pC

pC polarimeters

2 polarimeters in each ring
 6 horizontal and 6 vertical ultra-thin (~ 30 nm!) C targets each
 6 horizontal and 6 vertical ultra-thin (~ 30 nm!) C si strip detectors (TOF, E_c)

Carlos Muñoz Camacho (IPNO)

Polarization at RHIC

IPN-Orsay - Nov 20, 2011

7 / 16

pC polarimeters: kinematics

Calibration param. : time offset t_0 and effective dead layer thickness x_{DL} :

$$E_{meas} + E_{loss} = \frac{M_C}{2} \frac{L^2}{(t_{meas} + t_0)^2}$$

with $E_{loss}(E_{meas}, x_{DL})$ an enerly loss parameterization for carbon

Hydrogen Jet polarimeter

pp

Hydrogen Jet: kinematics

- Both beams intercept the H-jet (separated by \sim 4 mm)
- Beam and target are both protons:

$$P_{\rm beam} = -\frac{\epsilon_{\rm beam}}{\epsilon_{\rm target}} P_{\rm target}$$

• Elastic events easily identified by

$$t_{\rm TOF} = L \sqrt{\frac{m_p}{2E_{\rm kin}}}$$

• Asymmetry:

$$\epsilon = \frac{N_L - N_R}{N_L + N_R}$$

Analysis

Polarization profile

• Fit of P vs L/L_{max}

• P_{max} and $r = (\sigma_L/\sigma_P)^2$ are the 2 free parameters of the fit

Analysis

Polarization profile corrections

Carlos Muñoz Camacho (IPNO)

Polarization at RHIC

Results for Run-6 (2006)

Carlos Muñoz Camacho (IPNO)

Polarization at RHIC

Summary

Overview of RHIC polarimeters

	H-jet polarimeter	pC polarimeters
Target :	Polarized atomic H gas jet	Ultra thin C ribbon
Calibration :	Self-calibrating (known target pol.)	Normalized to H-jet
Event rate :	\sim 20 Hz \sim 8% stat. error in 6–8 h fill	$\sim 2 \text{ MHz}$ $\sim 2\% \text{ stat. error}$
Operation :	Continuous	Few min. every few hours
Role :	- Average beam pol. - Calibration for pC	 Fast online feedback Beam profile Bunch by bunch & store by store pol. for exp.
Carlos Muñoz Camach	no (IPNO) Polarization at RHIC	IPN-Orsay - Nov 20, 2011 14 / 16

- pp and pC elastic scattering in the CNI region well suited for polarimetry at RHIC energies
- 3–5% stat and 4–6% syst. uncertainties in polarization measurements
- Non-destructive measurements
- pC and pp complement to each other
- Normalization (abs. measurement) rely only on H-jet

Applicability at LHC ?

- At LHC, CNI region (probably) inaccessible. For fixed *t*:
 - Scattering angle $\sim 1/p_{\rm beam}$
 - Beam size $\sim 1/\sqrt{p_{\rm beam}}$

Higher -t needed to get out of the beam

- Higher recoil energy $-t = 2ME_{kin}$
- Counting rates at higher energy ??

