Fall meeting of the GDR PH-QCD: nucleon and nucleus structure studies with a LHC fixed-target experiment and electron-ion colliders (18-21 octobre 2011)

Cold nuclear matter effects on quarkonium production @ RHIC and LHC

Elena G. Ferreiro Universidade de Santiago de Compostela, Spain

Work done in collaboration with F. Fleuret, J-P. Lansberg, N. Matagne and A. Rakotozafindrabe EPJC61 (2009), PLB680 (2009), PRC81 (2010), NPA855 (2011) • A lot of work trying to understand A+A data (since J/ ψ = QGP signal)

Quarkonium as a hint of deconfinement QGP probe

 If we focalise on p+A data (where no QGP is possible) only cold nuclear matter (CNM) effects are in play here: shadowing and nuclear absorption EMC and energy loss

Quarkonium as a hint of coherence nPDF probe

 In fact, the question is even more fundamental: p+p data we do not know the specific production kinematics at a partonic level: (2→2,3,4) vs (2→1)

Quarkonium as a hint of QCD

QCD probe

Introduction : contents

Our goal:

To investigate the **CNM effects** and the impact of the specific **partonic production** kinematics 3 ingredients: •J/ ψ partonic production mechanism Shadowing Nuclear absorption • Results on J/ψ production @ RHIC and LHC To extend our study to Υ CNM effects : •fractional energy loss •gluon EMC effect

• Results on Υ production @ RHIC

Shadowing: an initial cold nuclear matter effect

- Nuclear shadowing is an initial-state effect on the partons distributions
- Gluon distribution functions are modified by the nuclear environment
- PDFs in nuclei different from the superposition of PDFs of their nucleons

Shadowing effects increases with energy (1/x) and decrease with Q^2 (m_T)

Nuclear absorption: a final cold nuclear matter effect

Particle spectrum altered by interactions with the nuclear matter they traverse => J/Ψ suppression due to final state interactions with spectator nucleons

Energy dependence

- At low energy: the heavy system undergoes successive interactions with nucleons in its path and has to survive all of them => Strong nuclear absorption
- At high energy: the coherence length is large and the projectile interacts with the nucleus as a whole => Smaller nuclear absorption

E. G. Ferreiro USC

CNM effects on quarkonium @ RHIC and LHC

On the kinematics of J/ ψ production: two approaches

- CNM -shadowing- effects depends on J/ ψ kinematics (x,Q²)
- J/ ψ kinematics depends on the production mechanism =>

Investigating two production mechanisms (including p_T for the J/ ψ):

$$g+g \rightarrow J/\psi$$
 $2 \rightarrow 1$ $x_{1,2} = \frac{m_T}{\sqrt{s_{NN}}} \exp(\pm y)$

intrinsic scheme: the p_T of the J/ψ comes from initial partons
 Not relevant for, say, p_T>3 GeV
 Only applies if COM(LO, α_s²) is the relevant production mechanism at low p_T

$$g+g \rightarrow J/\psi+g$$
, gg , g

♦ COM, CSM (NLO, NNLO)

for a given y, larger x in extrinsic scheme => modification of shadowing effects

Results d+Au @ RHIC: J/ ψ rapidity dependence of R_{dAu}

- shadowing depends on the partonic process: $2 \rightarrow 1$ or $2 \rightarrow 2$ arXiv:0912.4498
- antishadowing peak shifted toward larger y in the extrinsic case
- in order to reproduce data @ RHIC: nuclear absorption

 $\sigma_{abs} extrinsic > \sigma_{abs} intrinsic$ the kinematics matter for the extraction of σ_{abs}

E. G. Ferreiro USC

Fit of σ abs with EKS, EPS and nDS(g) from RdAu and RCP

Results Au+Au @ RHIC: J/ ψ centrality and y dependence

Results A+A @ RHIC: J/ ψ transverse momentum dependence

Extrinsic scheme: σ_{abs} = 0, 2, 4, 6 mb in 3 shadowing models

RAA increases with PT partially matching the trend of PHENIX and STAR data

Growth of R_{AA} not related to Cronin : it comes from the increase of x with p_T $x_{\perp} \propto \left(m_{_{J/\psi}}^2 + p_{\perp}^2
ight)^{1/2}$

Less shadowing effects when increasing p_T

p_T matters!!!

Work in progress: J/ ψ @ LHC rapidity dependence (2 \rightarrow 2)

Opposite CNM R_{AA} behaviour vs rapidity @ RHIC and LHC:

- At RHIC=> stronger suppression at forward y
 - At LHC => stronger suppression at mid y

CNM effects on quarkonium @ RHIC and LHC

Work in progress: J/ ψ @ LHC centrality dependence (2 \rightarrow 2)

GDR 18 Oct 2011 11

350

400

400

Work in progress: J/ ψ @ LHC centrality dependence (2 \rightarrow 2)

Work in progress: J/ ψ @ LHC pT dependence (2 \rightarrow 2)

Shadowing decreases with increasing pT

Stronger variation for EKS than nDSg EKS: 25-40% nDSg: 15-30%

p_T matters!!!

CNM effects: Comparing A+A results @ RHIC and LHC

Comparing A+A experimental results @ RHIC and LHC

(stronger at mid y and $p_T=0$)

ALICE data at mid y needed!

If recombination, R_{AA} at mid y > R_{AA} at forward y (p_T >0)

Place for recombination effects @ LHC

Other CNM effects: Υ rapidity dependence in dAu @ RHIC

• Gluon EMC effect

• Fractional energy loss

Other CNM effects: Υ rapidity dependence in dAu @ RHIC

Extrinsic scheme: $\sigma_{abs}=0$ mb, $\sigma_{abs}=0.5$ mb, $\sigma_{abs}=1$ mb in 3 shadowing models

- central: reasonable job
- forward : clearly too high

Physical interpretation

- backward: EMC effect
- central: antishadowing
- forward : shadowing≈1

energy loss is needed

EPS09LO

E. G. Ferreiro USC

CNM effects on quarkonium @ RHIC and LHC

GDR 18 Oct 2011 16

Work in progress: EMC effect

Work in progress: EMC effect

Let us try to increase the suppression of g(x) in the EMC region,

by using the maximum and minimum of EPS09

Works better for backward region

Work in progress: Energy loss effect

 Basic idea: An energetic parton traveling in a large nuclear medium undergoes multiple elastic scatterings, which induce gluon radiation
 => radiative energy loss (BDMPS)

- Intuitively: due to parton energy loss, a hard QCD process probes the incoming PDFs at higher x, where they are suppressed, leading to nuclear suppression
- The problem: This energy loss is subject to the LPM bound => Δ E is limited and does not scale with E (Brodsky-Hoyer)

At RHIC and LHC (contrary to SPS), typical partons (for x1 ~ 10⁻²) have energies of the order of hundreds of GeV in the nucleus rest frame
 => radiative energy loss has a negligible effect on the parton x₁

Work in progress: Energy loss effect

• Still, in order to explain large x_F data at RHIC, it would be useful to have => *a fractional energy loss*: $\Delta E \propto E$

(Old idea by Gavin Milana, thought to be ruled out by LPM bound)

• Recently (Arleo, Peigner, Sami arxiv:1006.0818) it has been probed that the **notion of radiated** energy associated to a hard process is more general than the notion of parton energy loss.

The medium-induced gluon radiation associated to large-x_F quarkonium hadroproduction:

- ✤ arises from large gluon formation times t_f >> L
- ***** scales as the incoming parton energy E
- cannot be identified with the usual energy loss
- qualitatively similar to Bethe-Heitler energy loss
- the Brodsky-Hoyer bound does not apply for large formation times

Thus, the Gavin-Milana assumption of an "energy loss" scaling as E turns out to be qualitatively valid for quarkonium production provided this "energy loss" is correctly interpreted as the radiated energy associated to the hard process (quarkonium production process), and **not** as the energy loss of independent incoming and outgoing color charges (of an independent parton suddenly produced)

 Note that space effect through Sudakov suppression can also induce a fractional energy loss but for x₁ > 0.5 (Kopeliovich))

E. G. Ferreiro USC

 $\Delta E|_{\text{ind, large } x_F} \sim N_c \alpha_s \,\hat{\omega} \sim N_c \alpha_s \frac{\sqrt{\Delta q_\perp^2}}{M}$

$$\Delta x_1 = \frac{\Delta E}{E} \sim N_c \alpha_s \frac{\sqrt{\Delta q_\perp^2}}{M_\perp}$$

Due to t_f of the order of nuclear size, this energy loss is not applicable in the backward rapidity regions.

Note that, independently of the gluon PDF parameterization, this energy loss will induce a minimum suppression of 90% up to a maximum one of 60% in the forward region

Conclusions

• We have studied the influence of specific partonic kinematics

within 2 schemes: intrinsic $(2 \rightarrow 1)$ and extrinsic $(2 \rightarrow 2)$ p_T for different shadowings: EKS98, EPS08, nDSg including nuclear absorption and different partonic models

• for J/ψ

A+A collisions @ RHIC: RAA forward y < RAA mid y as CNM in 2 \rightarrow 2 A+A collisions @ LHC: RAA forward y > RAA mid y as CNM in 2 \rightarrow 2 but... RAA forward y @ LHC > RAA forward y @ RHIC Place for recombination effects, to be checked with ALICE data (p_T>0) at mid y

• for Y in d+Au collisions @ RHIC:

EMC effect in the backward region

fractional energy loss in the central & forward region

http://phenix-france.in2p3.fr/software/jin/index.html

E. G. Ferreiro USC

CNM effects on quarkonium @ RHIC and LHC