J/ψ Nuclear Suppression from Parton Energy Loss

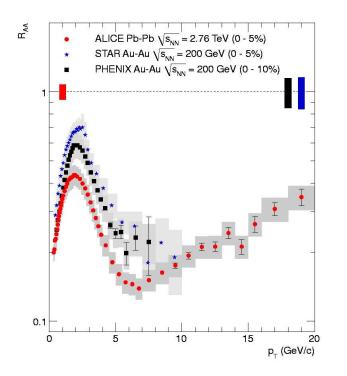
S. Peigné Subatech, Nantes, France

in collaboration with F. Arleo, M. Rustamova, T. Sami

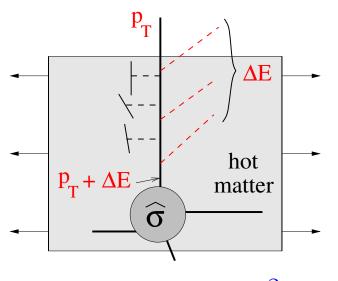
GDR PH-QCD – October 18-21, 2011

Introduction

• spectacular jet-quenching in A-A at RHIC and LHC



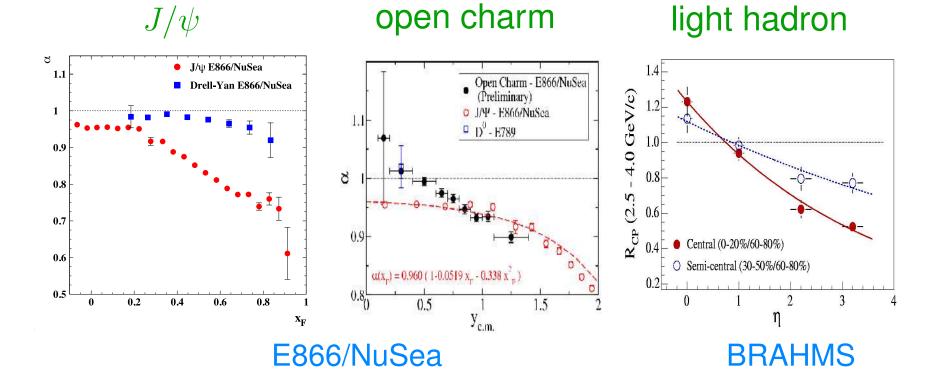
due to parton energy loss



 $\Delta E_{rad} \sim \alpha_s \,\hat{q} \, L^2$

magnitude of R_{AA} can be explained only if $\hat{q} \equiv \frac{\mu^2}{\lambda} \sim \hat{q}_{hot} \sim 1 \,\text{GeV}^2/\text{fm} \gg \hat{q}_{cold} \sim 0.05 \,\text{GeV}^2/\text{fm}$ \Rightarrow jet-quenching = prominent QGP signal

strong nuclear suppression also seen in p-A



huge suppression at large x_F / large rapidity might also be explained by ΔE_{parton} (in cold matter) ! • \hat{q}_{cold} small \Rightarrow large suppression arises from specific parametric behaviour of ΔE at large $x_{\rm F}$

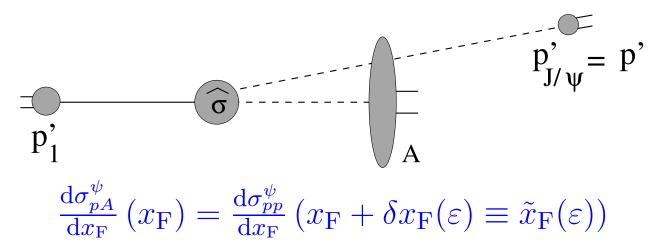
$$\Delta E|_{\text{large }x_{\text{F}}} \propto E$$

- in the following, focus on large $x_{\rm F} J/\psi$ production
 - intrinsic hard scale $M = M_Q$
 - more data than for open charm

we expect same physics to apply to *open charm* and *light hadron* production (but not to Drell-Yan)

Model

in c.m. frame of elementary p-N collision (*primed frame*):



shift in $x_{\rm F}$ takes into account energy loss ε of J/ψ partonic parent through nucleus

•
$$x_{\rm F} = \frac{p'_{\parallel}}{p'_{1\parallel}} = 2 \frac{M_{\perp}}{\sqrt{s_{_{NN}}}} \sinh y'$$

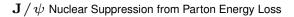
• ε defined in *nucleus rest frame* (where $E_{J/\psi} = E$) \Rightarrow need to relate x_F to E

 $\tilde{x}_{\mathrm{F}} = x_{\mathrm{F}} + \delta x_{\mathrm{F}} \leftrightarrow E + \varepsilon$ in nucleus rest frame

remark:

- model can address $x_F = 0$ ($x_F = 0$ corresponds to large *E* in nucleus frame and can thus be affected by parton energy loss)
- simplify following by choosing large $x_{\rm F}$:

$$x_{\rm F} \gg \frac{M_{\perp}}{\sqrt{s}} \Rightarrow x_{\rm F} \simeq \frac{E}{E_1} \Rightarrow \delta x_{\rm F} \simeq \frac{\varepsilon}{E_1}$$
$$\frac{\mathrm{d}\sigma_{pA}^{\psi}}{\mathrm{d}x_{\rm F}} \left(x_{\rm F}\right) = \frac{\mathrm{d}\sigma_{pp}^{\psi}}{\mathrm{d}x_{\rm F}} \left(x_{\rm F} + \frac{\varepsilon}{E_1}\right)$$

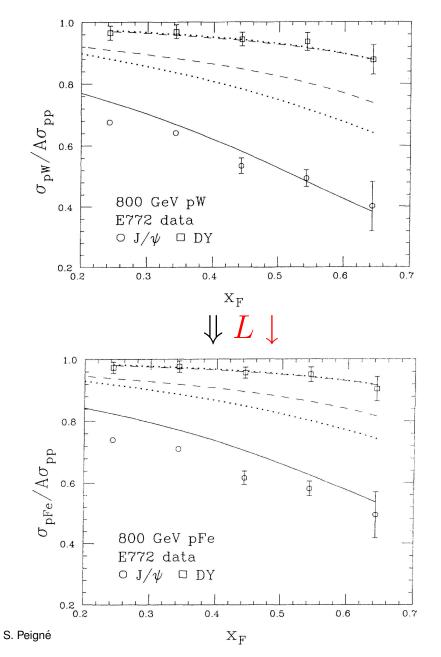


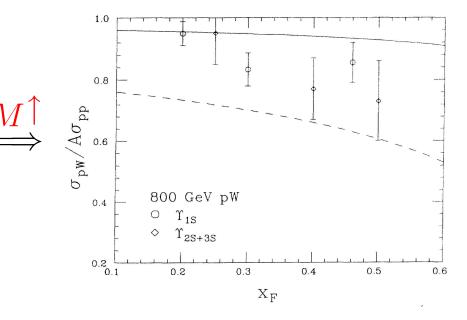
latter model for J/ψ nuclear suppression in p-A first proposed by Gavin & Milana (1992), with:

- $\varepsilon = average \Delta E$
- ad hoc choice $\Delta E \propto E \cdot L \cdot \frac{1}{M^2}$ (assumed to hold for both J/ψ and DY production)

fixed fractional energy loss $\frac{\varepsilon}{E} = \frac{\Delta E}{E} = \text{cst.}$ yields good description of E772 J/ψ data

Gavin-Milana model vs. E772 p-A data





predictions for smaller L and larger M tend to overestimate R_{pA} \Rightarrow dependence $\Delta E(L,M) \propto L \cdot \frac{1}{M^2}$ is too sharp model recently revisited

- Arleo, S.P., Sami, 1006.0818
 - physical interpretation of $\Delta E_{J/\psi} \propto E$ at large $x_{\rm F}$
 - dependence $\Delta E(E, L, M, \hat{q})$ from first principles
- Arleo, S.P., Rustamova, work in progress
 - use energy loss probability distribution $P(\varepsilon)$ to describe p-A J/ψ data

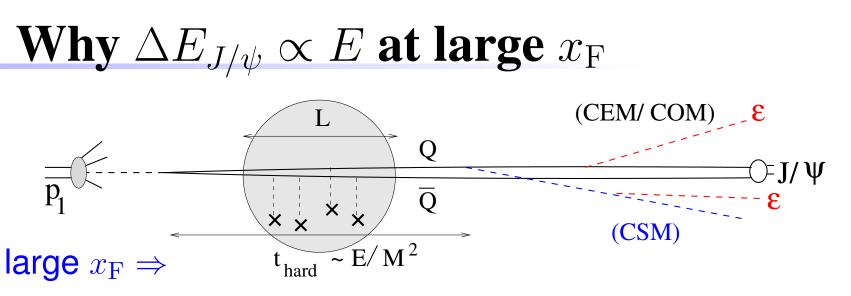
$$\frac{\mathrm{d}\sigma_{pA}^{\psi}}{\mathrm{d}x_{\mathrm{F}}}\left(x_{\mathrm{F}}\right) = \int_{0}^{\varepsilon_{max}} d\varepsilon P(\varepsilon) \,\frac{\mathrm{d}\sigma_{pp}^{\psi}}{\mathrm{d}x_{\mathrm{F}}}\left(x_{\mathrm{F}} + \frac{\varepsilon}{E_{1}}\right)$$

 $P(\varepsilon)$ crucial for quantitative purposes:

• ε exhibits large fluctuations around ΔE

•
$$x_{\rm F} \to 1 \Rightarrow \varepsilon \leq \varepsilon_{max} = (1 - x_{\rm F})E_1 \ll \Delta E$$

(model $P(\varepsilon) = \delta(\varepsilon - \Delta E)$ breaks down when $x_{\rm F} \to 1$)



• J/ψ hadronizes outside nucleus

 cc̄ pair remains color octet for a long time CEM/COM: t_{octet} ~ 1/Λ · E/M ≫ t_{hard} ~ E/M² ≫ L CSM: t_{octet} ~ t_{hard} by definition in CSM J/ψ is produced in association with hard gluon ⇒ independently of J/ψ production model:
partonic process ⇔ small angle scattering of color charge leaves room for radiation with t_{hard} ≪ t_f ≪ t_{had} associated gluon radiation spectrum turns out to be similar to that of 'asymptotic color charge'

asymptotic charge

fast ω, k_{\perp} color charge $\theta = k_{\perp}/\omega$ $E = \sqrt{\sigma} = \sqrt{\sigma} = q_{\perp}/E$ QED: radiation only if $\theta_s \neq 0$

 $\Rightarrow \qquad \text{QCD: radiation even if } \theta_s = 0 \\ \text{due to$ *color rotation* $}$

focus on non-abelian contribution: $\theta_s \rightarrow 0$

$$\omega \frac{dI}{d\omega} \sim \frac{N_c \alpha_s}{\pi} \int_{\theta_0^2}^{\theta_g^2} \frac{d\theta^2}{\theta^2 + \theta_M^2} \quad ; \quad \theta_g \equiv \frac{q_\perp}{\omega}; \, \theta_0 \equiv \frac{\Lambda}{\omega}; \, \theta_M \equiv \frac{M}{E}$$

• $\theta \le \theta_g \Leftrightarrow k_{\perp} \le q_{\perp}$: q_{\perp} must resolve gg fluctuation • $\theta \ge \theta_0 \Leftrightarrow k_{\perp} \ge \Lambda$: PQCD consistency

$$\Rightarrow \omega \frac{dI}{d\omega} \sim \frac{N_c \alpha_s}{\pi} \left\{ \ln \left(1 + \frac{q_\perp^2 E^2}{\omega^2 M^2} \right) - \ln \left(1 + \frac{\Lambda^2 E^2}{\omega^2 M^2} \right) \right\}$$

• charge produced at large $x_{\rm F}$ in p-A

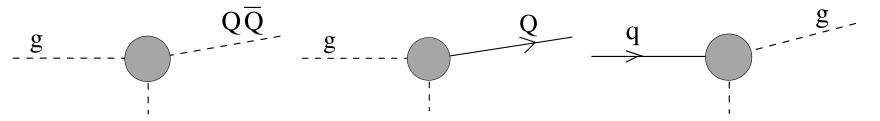
$$\omega \frac{dI}{d\omega}\Big|_{\text{ind}} = \omega \frac{dI}{d\omega}\Big|_{pA} - \omega \frac{dI}{d\omega}\Big|_{pp}$$

non-abelian contribution: $p_{\perp}^{2}(J/\psi)\Big|_{pA} = p_{\perp}^{2}(J/\psi)\Big|_{pp}$
slight modifications compared to asymptotic case:
• $\theta_{g}^{2} \equiv \frac{q_{\perp}^{2}}{\omega^{2}} \rightarrow \Delta \theta_{g}^{2} \equiv \frac{\Delta q_{\perp}^{2}}{\omega^{2}}; \quad \Delta q_{\perp}^{2} = \hat{q} L \ge \Lambda^{2}$
• $M^{2} \rightarrow M_{\perp}^{2} \equiv M^{2} + q_{\perp}^{2}$
 $\Rightarrow \omega \frac{dI}{d\omega} \sim \frac{N_{c}\alpha_{s}}{\pi} \left\{ \ln \left(1 + \frac{\hat{\omega}^{2}}{\omega^{2}} \right) - \ln \left(1 + \frac{\omega_{0}^{2}}{\omega^{2}} \right) \right\}$
 $\hat{\omega} \equiv \frac{\sqrt{\Delta q_{\perp}^{2}}}{M_{\perp}} E \quad ; \quad \omega_{0} \equiv \frac{\Lambda}{M_{\perp}} E$
 $\Delta E = \int d\omega \, \omega \, \frac{dI}{d\omega}\Big|_{\text{ind}} = N_{c}\alpha_{s}(\hat{\omega} - \omega_{0}) = N_{c}\alpha_{s}\frac{\sqrt{\hat{q}L} - \Lambda}{M_{\perp}} E$

F.Arleo, S.P., T.Sami, 1006.0818 [hep-ph]

In summary:

• physical origin of $\omega \frac{dI}{d\omega}$ and $\Delta E_{J/\psi} \propto E$ at large $x_{\rm F}$: (medium-induced) soft gluon radiation with $t_f \gg t_{hard}$ $\Delta E \propto E$ when color charge is scattered to final state: quarkonium open charm light hadron



does not apply to Drell-Yan production

- parametric form of $\omega \frac{dI}{d\omega}$ and $\Delta E(L,M)$ specified $\frac{\Delta E}{E} \sim \frac{\sqrt{L}}{M}$
 - similar to ΔE_{rad} of asymptotic *color* charge
 - smoother than Gavin-Milana choice $\frac{\Delta E}{E} \sim \frac{L}{M^2}$

Brodsky-Hoyer bound on energy loss (1993)

- look for radiation with $t_f \gg L$ off asymptotic particle
- choose $p_{\perp}^2|_{pA} = p_{\perp}^2|_{pp}$ (\Leftrightarrow non-abelian contribution) in *abelian* model
- find no contribution from $t_f \gg L$ and conclude:

$$t_f \sim \frac{\omega}{k_\perp^2} \lesssim L \Rightarrow \Delta E \lesssim L \langle k_\perp^2 \rangle$$

- argument fails in QCD: $\Delta E \propto E$ not forbidden by first principles
- argument fails in QED when $p_{\perp}^2|_{pA} = p_{\perp}^2|_{pp} + \Delta p_{\perp}^2$
- bound applies to *particle produced in a medium* (or undergoing large angle scattering)

Quenching weight $P(\varepsilon)$

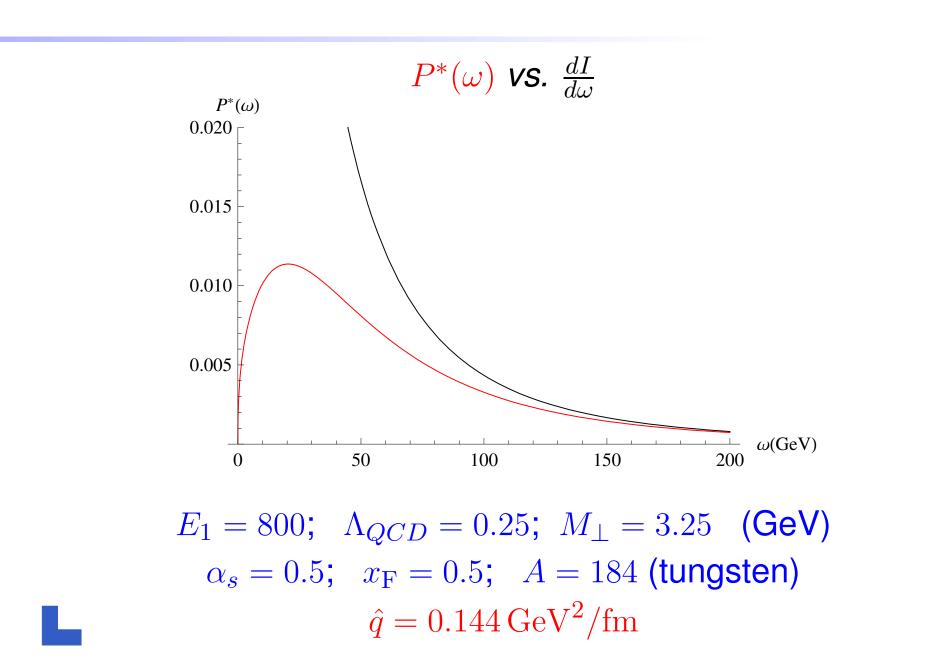
$$\begin{split} P(\varepsilon) &= \text{energy loss probability distribution;} \quad \int d\varepsilon P(\varepsilon) = 1 \\ & \text{how to get normalized } P(\varepsilon) \text{ from } \frac{dI}{d\omega} \text{?} \\ & (I \equiv \int_0^\infty d\omega \frac{dI}{d\omega} = \infty) \end{split}$$

• use Poisson approximation \Leftrightarrow assume independent successive losses ω_i

$$\mathcal{P}(\epsilon) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_i \frac{dI(\omega_i)}{d\omega} \right] \delta\left(\epsilon - \sum_{i=1}^{n} \omega_i\right) \exp\left[-I\right]$$
$$P(\varepsilon) \text{ satisfies integral equation}$$
$$\frac{\partial P(\varepsilon)}{\partial L} = \int_0^\infty d\omega \left[P(\varepsilon - \omega) - P(\varepsilon)\right] \frac{dI}{d\omega dL}$$

Landau kinetic equation for ionization losses (1944)(Poisson approximation legitimate)

\bigtriangleup radiative losses: radiating ω_i takes time $t_f(\omega_i)$ • large $x_{\rm F}$ quarkonium production in p-A: each medium-induced radiated gluon is emitted with $t_f(\omega_i) \sim \frac{\omega_i}{\Delta q_\perp^2} \gg t_{hard} \gg L$ $\omega_i \sim \omega_j \Rightarrow$ emissions *i* and *j* are not independent for self-consistency, impose the constraint $\omega_1 \ll \omega_2 \ll \ldots \ll \omega_n$ $\Rightarrow P(\varepsilon) \simeq \frac{dI}{d\varepsilon} \exp\left\{-\int_{\varepsilon}^{\infty} d\omega \frac{dI}{d\omega}\right\} \equiv P^*(\varepsilon)$ • $P^*(\varepsilon)$ only expression for quenching weight consistent with independent emissions



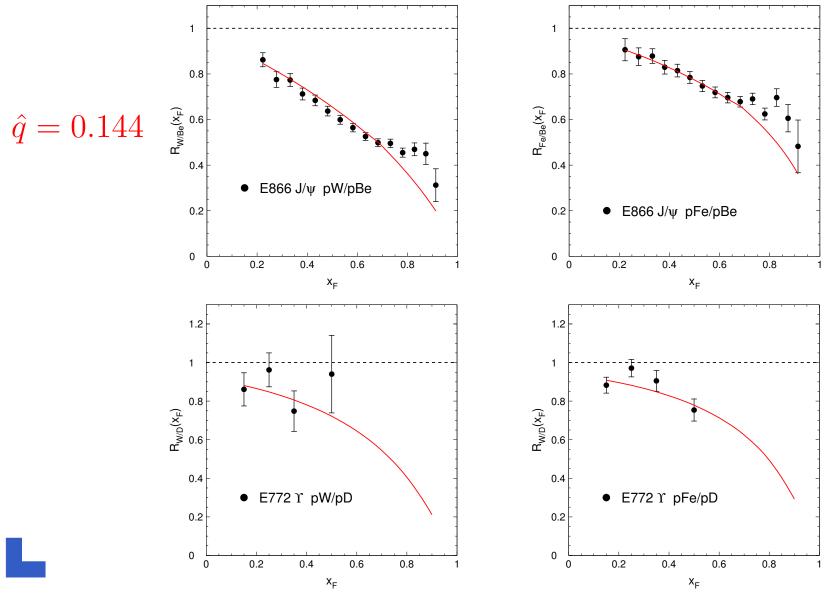
Comparing to the data

model

$$\frac{\mathrm{d}\sigma_{pA}^{\psi}}{\mathrm{d}x_{\mathrm{F}}}\left(x_{\mathrm{F}}\right) = \int_{0}^{\varepsilon_{max}} d\varepsilon \, P^{*}(\varepsilon) \, \frac{\mathrm{d}\sigma_{pp}^{\psi}}{\mathrm{d}x_{\mathrm{F}}}\left(x_{\mathrm{F}} + \frac{\varepsilon}{E_{1}}\right)$$
$$P^{*}(\varepsilon) = \frac{\mathrm{d}I}{\mathrm{d}\varepsilon} \, \exp\left\{-\int_{\varepsilon}^{\infty} \mathrm{d}\omega \frac{\mathrm{d}I}{\mathrm{d}\omega}\right\}$$
$$\omega \frac{\mathrm{d}I}{\mathrm{d}\omega} = \frac{N_{c}\alpha_{s}}{\pi} \left\{\ln\left(1 + \frac{\hat{\omega}^{2}}{\omega^{2}}\right) - \ln\left(1 + \frac{\omega_{0}^{2}}{\omega^{2}}\right)\right\}$$

depends on single 'free' parameter \hat{q} (via $\hat{\omega} \equiv \frac{\sqrt{\hat{q}L}}{M_{\perp}} E$)

preliminary results



- value $\hat{q} = 0.144$ larger than $\hat{q} \sim 0.05$ obtained from e-A DIS or p-A Drell-Yan data
 - \rightarrow at large $x_{\rm F}$ (small x_2) we expect sizeable part of suppression from shadowing of nPDFs
- data points at $x_{\rm F} > 0.8$ not included in the fit for $R_{pW}^{J/\psi}$

($x_{\rm F} \nearrow$ subprocess $gg \rightarrow c\bar{c}$ becomes subdominant)

- quantitative agreement between model and data for slope *and* normalization of $R_{pA}(x_F)$ supports:
 - $\Delta E_{parton} =$ dominant effect in nuclear suppression
 - parametric dependence of $\Delta E \propto E$ and $\frac{dI}{d\omega}$

Summary and outlook

 $\bullet \ \Delta E$ seems essential to explain nuclear suppression

- large p_T jet-quenching in A-A
- large $x_{\rm F}$ hadron suppression in p-A
- simple features of ΔE have been overlooked
- understand nuclear suppression in p-A before A-A • $\Delta E \propto E$ should affect RHIC and LHC J/ψ and Υ p-A data *at large rapidity*

 \rightarrow see Elena's talk