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Introducing TDAs

γ∗(q) +N(p1)→ N ′(p2) + π(pπ)

Factorization theorem J.Collins, L.Frankfur, M.Strikman’96 ⇒ GPD description;

A factorization theorem claimed for the backward regime ( q2 = −Q2 and

s ≡ (p1 + q)2 - large; xBj ≡ Q2

2p1·q
and ξ ≡ − (pπ−p1)·n

(pπ+p1)·n -fixed;

u ≡ (pπ − p1)2 ∼ 0

L.Frankfurt, P.Pobylitsa, M.Polyakov and M.Strikman’99; L.Frankfurt, M.Polyakov,
M.Strikman, D.Zhalov and M.Zhalov’02



Backward electroproduction of a pion on a proton

Backward kinematics: eN → e′N ′π in the center-of-mass of the γ∗-proton
u = (pπ − p1)2 ≡ ∆2 ∼ 0 (cos θ∗π ∼ −1)

Cross section of γ∗N → N ′π d2σ
dΩ∗π

scales as 1
(Q2)4

(c.f. 1
(Q2)2

for usual HMP)



Twist-3 πN TDA

L.Frankfurt, P.Pobylitsa, M.Polyakov & M.Strikman’99; J.P.Lansberg, B.Pire &
L.Szymanowski’07:

4(P · n)3

∫ [ 3∏
i=1

dzi

2π
eixizi(P ·n)

]
〈π(pπ)| εc1c2c3Ψc1ρ (z1n)Ψc2τ (z2n)Ψc3χ (z3n) |N(p1, s1)〉

= δ(2ξ − x1 − x2 − x3)i
fN

fπM

×
[
V πN1 (P̂C)ρ τ (P̂U)χ +AπN1 (P̂ γ5C)ρ τ (γ5P̂U)χ + TπN1 (σPµC)ρ τ (γµP̂U)χ

+V πN2 (P̂C)ρ τ (∆̂U)χ +AπN2 (P̂ γ5C)ρ τ (γ5∆̂U)χ + TπN2 (σPµC)ρ τ (γµ∆̂U)χ

+
1

M
TπN3 (σP∆C)ρ τ (P̂U)χ +

1

M
TπN4 (σP∆C)ρ τ (∆̂U)χ

]

P = 1
2

(p1 + pπ); ∆ = (pπ − p1); n2 = p2 = 0; 2p · n = 1; σPµ ≡ P νσνµ;

C: charge conjugation matrix;

fN = 5.2 · 10−3 GeV2 (V. Chernyak and A. Zhitnitsky’84);

8 TDAs: H(x1, x2, x3, ξ, ∆2, µ2) ≡ {Vi, Ai, Ti} (x1, x2, x3, ξ, ∆2, µ2)



How πN TDAs meet fundamental theoretical requirements:

1 support properties

2 polynomialty in ξ of the Mellin moments in x1, x2, x3

3 QCD evolution

4 symmetry properties: SU(2) isospin + permutation symmetry
⇒ 8 independent πN TDAs to describe all isospin channels

5 crossing: πN TDA ↔ πN GDA

6 chiral properties: soft pion theorem



Support properties of πN TDAs

The natural way to depict physical domains for πN TDAs: Mandelstam plane
x1 + x2 + x3 = 2ξ (barycentric coordinates)

Intersection of three stripes
−1 + ξ ≤ xi ≤ 1 + ξ

“ERBL-like” region: x1, x2, x3 ∈ [0, 2ξ]

“DGLAP-like type I” region: one
momentum fraction is positive and two
are negative

“DGLAP-like type II” region: one
momentum fraction is negative and two
are positive

DGLAP-like domains are bounded by the lines xi = ±1 + ξ; xi = 0

Two limiting cases: ξ = 0 and ξ = 1.



Polynomiality of the Mellin moments of πN TDAs

(n1, n2, n3)-th Mellin moments in x1, x2, x3 of πN TDA are the
form factors of the local twist three operators

Ôµ1...µn1ν1...νn2λ1...λn3 (0)

=
[
i ~Dµ1 ...i ~Dµn1 Ψ(0)

] [
i ~Dν1 ...i ~Dνn2 Ψ(0)

] [
i ~Dλ1 ...i ~Dλn3 Ψ(0)

]
Polynomiality is the direct consequence of the Lorentz invariance:
(n1, n2, n3)-th Mellin moments of πN TDAs are polynomials of ξ
order N+1 (N ≡ n1 + n2 + n3)

analogue of the D-term for GPDs (C.Weiss and M.Polyakov’99)
exists for V1,2, A1,2, T1,2



A note on the evolution

πN TDAs depend on the renormalization scale µ2 of operators in
their definition (scale at which partons are resolved)

Generalization of DGLAP equation. Splitting functions are much
more complicated: include the pieces different in different
kinematical regions (3 types of kinematical regions exist); LO
kernels B.Pire &L. Szymanowski’05

As in the case of PDFs and GPDs evolution of TDAs can be treated
in terms of renormalization of the local operators corresponding to
their x moments

Matrix elements of the local operators in question were extensively
studied in connection with scale dependence of nucleon DA e.g.
N. Stefanis’97, V. Braun et al’98, 99



Spectral representation for πN TDAs:

O. Teryaev’01: the relation between DDs and GPDs is a particular case of the
Radon transform

Polynomiality property ⇔ the Cavalieri conditions

Support properties of + polynomiality ⇔ spectral representation + spectral
constraints.

Spectral representation A. Radyushkin’97 generalized for πN TDAs:

H(x1, x2, x3 = 2ξ − x1 − x2, ξ)

=

[
3∏
i=1

∫
Ωi

dβidαi

]
δ(x1 − ξ − β1 − α1ξ) δ(x2 − ξ − β2 − α2ξ)

×δ(β1 + β2 + β3)δ(α1 + α2 + α3 + 1)F (β1, β2, β3, α1, α2, α3) ;

Ωi: {|βi| ≤ 1, |αi| ≤ 1− |βi|} are copies of the usual DD square in spectral
parameter space;

spectral density F (...) is the function of six variables that are subject to two
constraints ⇒ quadruple distributions

This form ensures polynomiality and support



Crossing πN TDA ↔ πN GDA and soft pion theorem

Crossing relates πN TDAs in γ∗N → πN ′ and πN GDAs (light-cone wave
function)

Physical domain in (∆2, ξ)-plane (defined by ∆2
T ≤ 0) in the chiral limit

(m = 0):

Soft pion theorem Pobylitsa, Polyakov and Strikman’01 (Q2 � Λ3
QCD/m)

constrains πN GDA at the threshold ξ = 1, ∆2 = M2.



Soft pion theorem for πN GDA

Soft pion theorem Pobylitsa, Polyakov and Strikman’01 (Q2 � Λ3
QCD/m):

〈0|Ôαβγρτχ (z1, z2, z3)|πaNι〉 = −
i

fπ
〈0|
[
Q̂a5 , Ô

αβγ
ρτχ (z1, z2, z3)

]
|Nι〉 ,

with
[
Q̂a5 , Ψαη

]
= − 1

2
(σa)αδγ

5
ητΨδτ ;

At the pion threshold (ξ = 1, ∆2 = M2 in the chiral limit) soft pion theorem
fixes πN TDAs/GDAs in terms of nucleon DAs V p, Ap, T p (see V. Braun,
D. Ivanov, A.Lenz, A.Peters’08).

E.g. soft pion theorem for uud proton to π0 TDAs:

{V pπ
0

1 , Apπ
0

1 }(x1, x2, x3, ξ = 1,∆2 = M2) = −
1

8
{V p, Ap}(

x1

2
,
x2

2
,
x3

2
) ;

T pπ
0

1 (x1, x2, x3, ξ = 1,∆2 = M2) =
3

8
T p(

x1

2
,
x2

2
,
x3

2
)

{V pπ
0

2 , Apπ
0

2 , T pπ
0

2 } = −
1

2
{V pπ

0

1 , Apπ
0

1 , T pπ
0

1 } T pπ
0

3,4 = 0 ;

C.f. soft pion theorems for isoscalar and isovector pion GPDs:

HI=0(x, ξ = 1) = 0; HI=1(x, ξ = 1) = φπ(x)



Realistic strategy for modelling πN TDAs

No enlightening ξ = 0 limit as for GPDs

In the limit ξ → 1 πN TDAs are fixed due to soft pion theorems in
terms of nucleon DAs

ξ → 1 limit allows to fix the overall magnitude

try to start from ξ = 1 limit rather than the forward limit ξ = 0



“Skewing” ξ = 1 limit for pion isovector GPD (toy exercise)

Let us try to use input at ξ = 1 rather than ξ = 0 for GPD modeling.

let us perform the change of variables in the DD representation for GPDs:
α = κ+θ

2
, β = κ−θ

2
This gives:

H(x, ξ) =

∫ 1

−1
dκ

∫ 1

−1
dθ δ

(
x+

1− ξ
2

θ −
1 + ξ

2
κ

)
1

2
F (κ, θ) ,

where F (κ, θ) ≡ f
(
κ−θ

2
, κ+θ

2

)
try the following factorized Ansatz:

F (κ, θ) = φπ(κ)h(θ)

with the profile h(θ) normalized according to
∫ 1
−1 dθh(θ) = 1 .

Then H(x, ξ = 1) = φπ(x)

Problem is to implement the so-called “Munich symmetry” f(β, α) = f(β, −α).
But e.g. h(θ) = φπ(θ): ok.



“Skewing” ξ = 1 limit for πN TDAs

After suitable change of spectral variables (κ = α3 + β3, θ = α1+β1−α2−β2
2

,

µ = α3 − β3, λ = α1−β1−α2+β2
2

) and introduction of “quark-diquark” coordinates

w = x3 − ξ; v = x1−x2
2

:

H(w, v, ξ) =

∫ 1

−1
dκ

∫ 1−κ
2

− 1−κ
2

dθ

∫ 1

−1
dµi

∫ 1−µ
2

− 1−µ
2

dλ δ(w −
κ− µ

2
(1− ξ)− κξ)

×δ
(
v −

θ − λ
2

(1− ξ)− θξ
)
F (κ, θ, µ, λ)

A factorized Ansatz for quadruple distribution Fi:

F (κ, θ, µ, λ) = V (κ, θ)h(µ, λ)

with the profile h(µ, λ) normalized as
∫
dµ
∫
dλh(µ, λ) = 1.

Since H(w, v, ξ = 1) = V (w, v) for V one may use input from the soft pion
theorem

A possible choice for the profile: h(µ, λ) = 15
16

(1 + µ)((1− µ)2 − 4λ2);
vanishes at the borders of the definition domain.





Nucleon pole contribution

u-channel nucleon exchange is complementary to the spectral representation
(D-term like contributions) non-zero in the ERBL-like region 0 ≤ xi ≤ 2ξ .

The effective Hamiltonian for πN̄N :

Heff = igπNN N̄α(σa)αβγ5N
βπa

〈πa(pπ)|Ôαβ γρτχ (λ1n, λ2n, λ3n)|Nι(p1, s1)〉

=
∑
sp

〈0|Ôαβγρτχ (λ1n, λ2n, λ3n)|Nκ(−∆, sp)〉(σa)κ ι
igπNN Ū%(−∆, sp)

∆2 −M2

(
γ5U(p1, s1)

)
%
.

After decomposition over the Dirac structures:{
V1, A1, T1

}(πN)
(x1, x2, x3)

= ΘERBL(x1, x2, x3)×
MfπgπNN

∆2 −M2

1

(2ξ)

{
V p, Ap, T p

}(x1

2ξ
,
x2

2ξ
,
x3

2ξ

)
;

Composite model for πN TDAs: spectral representation with input at ξ = 1
plus D-term



Calculation of the amplitude

LO amplitude for γ∗p→ nπ+ can be
computed as in J.P. Lansberg, B. Pire
and L. Szymanowski’07

21 diagrams contribute

M∼
∫ 1+ξ

−1+ξ
d3xδ(x1 + x2 + x3 − 2ξ)

∫ 1

−1
d3yδ(1− y1 − y2 − y3)

(
21∑
α=1

Tα

)

Each Tα, has the structure:

Tα ∼ Kα(x1, x2, x3)×Qα(y1, y2, y3)×
[combination of πN TDAs]× [combination of nucleon DAs]

T1 =
qd(2ξ)2[(V nπ

+

1 −Anπ+

1 )(V p −Ap) + 4Tnπ
+

1 T p + 2
∆2
T

M2 T
nπ+

4 T p]

(2ξ − x1 − iε)2(x3 − iε)(1− y1)2y3



Classification of convolution kernels

Switch to quark-diquark coordinates

The following types of convolution kernels occur:

K
(±,±)
I (x1, x2, x3) =

1

(w ± ξ ∓ iε)
1

(v ± ξ′ ∓ iε)

K
(−,±)
II (x1, x2, x3) =

1

(w − ξ + iε)2

1

(v ± ξ′ ∓ iε)

Strategy for the calculation of the P.V. integral

1 Insert the spectral representation for TDA

2 Interchange the order of integration and compute w and v integrals using the
two delta functions.

3 One is left with four integrations over spectral parameters. Two of these
integrations are to be performed with the principal value prescription.

4 After a suitable change of variables one may perform the two principle value
integrations analytically.

5 The double integration over the remaining two spectral parameters has to be
performed numerically.



CLAS γ∗p→ π+n very preliminary analysis by Kijun Park I

Table: Determination of kinematic bin

variable unit num. bin range bin size
W GeV 1 > 2.0 0.4
Q2 GeV2 5 1.6 ∼ 4.5 various
|∆2
T | GeV2 1 < 0.5 0.5



CLAS γ∗p→ π+n very preliminary analysis by Kijun Park II



Ideas for PANDA

J.P. Lansberg, B. Pire, L. Szymanowski’07: πN TDAs arise in the factorized
description of

N(p1) + N̄(p2)→ γ∗(q) + π(pπ)→ l+(k1) + l−(k2) + π(pπ)

W 2 = (p1 + p2)2 and q2 = Q2 - large; (p1 − pπ)2-small (θπ ∼ 0 in C.M.S: near
forward kinematics)

Test of universality of TDAs



Conclusions & Outlook

1 hard exclusive electroproduction of baryons off nucleons provide new information
about correlation of partons inside hadrons

2 experimental information on πN TDAs can be extracted from γ∗N → N ′π in
the kinematical conditions of Jlab already at 6 GeV; more is expected at 12 GeV.

3 p̄p→ πl+l− in PANDA. Check universality of TDAs

4 spectral representation for πN TDA based on quadruple distributions which
satisfies the polynomiality condition and respects the support properties is
proposed

5 factorized Ansatz for quadruple distributions with input at ξ = 1 is proposed

6 a reliable method for the calculation of real and imaginary parts of γ∗N → N ′π
amplitude employing factorized Ansatz for quadruple distributions is proposed.

7 γ∗N → N ′π cross-section computed to confront the available preliminary CLAS
data

8 backward electroproduction of η. Data exists: V.Kubarovsky et al.


