

Impact of AFTER on Astroparticle Physics

Orsay, 20. October 2011

(¹KIT, ²LPNHE)

R. Ulrich¹, R. Engel¹, I. Maris², M. Unger¹, T. Pierog¹

www.kit.edu

Connecting High Energy Particle Physics with Astrophysics

Extensive Air Showers (especially Muons), Atmospheric Neutrino Fluxes

Ralf Ulrich, ralf.ulrich@kit.edu

Overview

The Pierre Auger Observatory

1600 Water-Cherenkov Detectors, \approx 3000 km²

Data and Reconstruction

Energy Spectrum

- What is the origin of the high energy cutoff?
 - Photopion production: ${\it p} + \gamma_{
 m cmb}
 ightarrow {\it N} + \pi$
 - Giant-Dipole-Resonances: $A + \gamma_{
 m cmb}
 ightarrow (A-1) + N$
 - Maximal energy of accelerators
- Depends on cosmic ray composition!

Ralf Ulrich, ralf.ulrich@kit.edu

- One of the key observations of Auger
- $\bullet\,$ Something fundamental is happening around $3\times10^{18}\,\text{eV}$
- Composition changes rapidly? Interaction physics?

Longitudinal and Surface-Array Data

Ralf Ulrich, ralf.ulrich@kit.edu

Auger Muon Results

- Models significantly under-predict muons
- Muon deficit largest at high zenith angles $(N_\mu/N_\mu^{
 m QII,p}\sim 2)$
- \Rightarrow Not completely clear how to fix: energy scale, GeV-TeV interactions, composition ...

Inelastic Proton-Proton Cross-Section

Based on $X_{\rm max}$ fluctuations \Rightarrow not sensitive to muon-related problems

Sensitivity of Air-Showers to Interactions

- Global shower properties and the shower maximum are sensitive to the highest energy interactions
- Muons in air showers sensitive to the hadronic cascade over all energies

ICECUBE, Atmospheric+Astrophysical Neutrinos

Neutrino Spectrum

• Multi-TeV atmospheric muons+neutrino background

Production of High-Energy Muons

Extensive Air Showers

 $A + air \rightarrow$ hadrons $p + air \rightarrow$ hadrons $\pi + air \rightarrow$ hadrons

 $\begin{array}{c} e^{\pm} \rightarrow e^{\pm} + \gamma \\ \gamma \rightarrow e^{+} + e^{-} \end{array}$

 $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu_{\mu}}$

Important energies: 10 - 1000 GeV

	beam particle	secondary
pion	72.3%	89.2 %
nucleon	20.9 %	-
kaon	6.5%	10.5 %

Air shower components: hadrons, electromagnetic, muons

Modelling of Interactions in Air Showers

Requirements and Problems:

- ► Interactions up to √s ~ 500 TeV → Far beyond accelerator energies...
- Mainly soft physics + diffraction: forward region \rightarrow Difficult to instrument...
 - \rightarrow Only fixed target at lower energies...
- ► Target is air: p-air, π-air, K-air, A-air, ... → Typical target very different from air: Nuclear effects must be considered...

Ingredients:

- Theory: pQCD (hard) + Gribov-Regge (soft)
- A lot of phenomenology: Diffraction, String fragmentation, Saturation, Remnants, Nuclear effects, ...

Older models:

Glauber based, different mostly in remnants+diffraction, for example: QGSJet01 (Kalmykov, Ostapchenko) SIBYLL (Engel, Gaisser, Lipari, Stanev)

Recent models:

QGSJetII (Ostapchenko) Theory++, Optimized for cosmic rays EPOS (Werner, Pierog) Phenomenology++ Optimized for LHC, RHIC (and cosmic rays)

Hadronic Interactions in EAS

• Pion cascade in air

 $\bullet\,$ Pions decay into muons with a peak around $\sim 35\,\text{GeV}$

Muon Production in EAS

Projectiles in air showers that lead to muon production

Relevant Target: Air (¹⁴N, ¹⁶O, ...)

NA61, Fixed Target at SPS

- Active contribution from cosmic-ray group at KIT
- Ideal to study pion interactions that directly produce muons in air-showers

LHC: CMS/CASTOR/TOTEM

- Active contribution from group at KIT in CMS/CASTOR
- Improve understanding of early stages of air shower development
- QCD at high energies, high parton densities
- But:
 - Only p-p, Pb-Pb, p-Pb
 - $\bullet\,$ Forward region difficult to instrument, miss 6.5 $<\eta<$ 8.2

LHC: Fixed Target

- Variety of (secondary) projectiles: p, pions, kaons, ...
- Different targets, including: C (solid), N₂ (liquid), O₂ (liquid), ...
- Measure forward particle production
- Good magnetic bending power

- Cross sections
- Elasticity (projectile energy/xf spectrum)
- e/m energy transfer (pi0 energy/xf spectrum)
- Multiplicity
- Forward baryon spectra

Phenomenological Evidence for Scaling

Fermilab pp, Brenner et al. 1982

Extrapolation to Ultra-High Energies

Elasticity (e.g. pair \rightarrow p) Spectra

Summary

Exciting connections between cosmic-ray and elementary particle physics

Muons in Air Showers

- $\rightarrow\,$ Interactions GeV to EeV
 - Significant deficit in simulations
 - Have to learn much more about hadronic interactions at $\sim {\rm TeV}$
 - Fixed target at LHC could contribute significantly

The combination of LHC and Auger data in the next years can bring us much closer to solving the cosmic-ray puzzle